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i. ABSTRAC T

A study was made of the thermal protection requirements for the M2-F2 vehicle for

a wide variety of vehicle sizes, weights, and re-entry conditions. The effects of ascent

and abort were included for the Titan II, Titan III-C, and Saturn I-B boosters. Heat

protection requirements were established for systems which include ablation, re-

radiation, and ablation over re-radiation, separately or in combination, as required.

Requirements were established for refurbishible systems having various materials and

backface temperatures.



2. NOMENC LATURE

A Pre-exponential factor in the Arrhenius equation; reference area

BF Backface

CD Coefficient of drag

C L Coefficient of lift

Cg Specific heat of pyrolysis gases

Cp Specific heat of solid; pressure coefficient

E Activation energy in the Arrhenius equation

H I_tent heat

h Enthalpy; altitude

K Thermal conductivity

L Reference length

r_ Ablated mass loss rate at surface of solid

m_ Pyrolysis gas generation rate
s

M Mach number

i_I Molecular Weight

n Order of Reaction

Pr Prandtl number

p Pressure

q Dynamic pressure

q Heat flux

Q Total Heating

Q*HW Hot wall heat of ablation

R Universal gas constant

r Radius

S Surface erosion

s Surface length

t Time; thickness

T Temperature



" 2. NOMENCLATURE (Cont'd)

TH Thickness

u Velocity (local)

V Velocity

x Co-ordinate distance from original surface of solid material

(_ Angle of attack

8 Area ratio = (char solid/char solid + char porous)

Ratio of specific heats; flight path angle

Emissivity

A distance from body to flow separation boundary, standoff distance

r_ (see equation 16)

/_ Sweep angle

X Mean free path

0 Body Angle

_t Viscosity

_5 Bank angle

p Density

(y Stefan Boltzmann Constant

r Shear stress

= Free stream

Subscripts

b Base

BF Backface

B L Boundary layer

Block Blocked

C Convective

c Char

cal Calorimeter



2. NOMENCLATURE (Cont'd)

cg

CR

D

e

f

g

gf

HGR

HW

i

ins

k

LD

LE

m

mtl

n

o

R

R

Re

RR

S

S

subl.

turb.

Gas combustion

Char removal

Degradation

Edge boundary layer; erosion

Final

Gas

Gas formation

Hot gas radiation

Hot wall

i th leg of the modified Arrhenius plot; ionization

Insulation

Cracking or recombination

Laminar detached

Leading edge

Mass

Material

Nose

Stagnation point

Radius

Recovery

Reynolds number

Re-radiation

Stagnation

Entropy

Sublimation

Turbulent

4



TD

traj.

V

W

Turbulent detached

Trajectory

Virgin

Wall

Superscripts

2. NOMENCLATURE (Cont'd)

Reference conditions (Eckert)



3. INTRODUCTION "

There is considerable interest in lifting-body entry vehicles for future manned space

missions. These missions are usually constrained to altitudes lower than for syn-

chronous orbits, and in general dictate a need for moderate lifting capability such as

exhibited by the M2-F2 vehicle.

The shape of most applicable lifting bodies is such that there is a considerable variation

of heating rates over the vehicle surface. In addition, a wide variation in thermal

environments exists along the flight path. These variations, and the likely existence

of turbulent flow over portions of the vehicle surface, complicate the design of

efficient thermal protection systems for lifting entry vehicles.

The study discussed in this final report was initiated to assess the thermal protection

requirements, to obtain accurate evaluations of shield weight requirements, and

to delineate problem areas which may require increased research effort. Both ablative

and combinations of ablative, re-radiative, and ablative over re-radiative thermal

protection systems with refurbishable capability were considered for a wide range of

M2-F2 vehicle sizes and weights capable of entry from a range of near-earth orbits.

The scope of the study may be summarized as follows:

Vehicle NASA/Ames M2-F2 configuration as shown in Figure 1

Booster Titan II, Titan III-C, Saturn I-B

Vehicle Weight 3172, 4536, 6804 kg nominal weight and + 10%

(7000, 10,000, 15,000 lb}

Vehicle Length 6.71, 7.92, 9.14 m nominal length and +10%

(22, 26, 30 ft)

Trajectories

Ascent

Abort

Entry

Titan II, Titan III-C, Saturn I-B

From the above boosters

7,468 m/sec (24,500 ft/sec)

9,144 m/sec (30,000 ft/sec)

10,363 m/sec (34,000 ft/sec)

6



Heat Protection Systems

Ablation

Re -radiation

Ablation over re-radiation

Materials

Ablation

Re -radiation

Insulation

Microballoon Phenolic Nylon (MPN)

Elastomeric Shield Material (ESM)

/

Rene 41, TZM

Ablation system - ablation material (ESM, MPN)

Re-radiation system - microquartz (MQ)

foamed pyrolytic graphite (FPG)

Structure Temperature (Max. allowable)

422°K (300°F)

589°K (600°F)

Heat Protection System Weights

(include refurbishment and attachment weights)

The scope of the study is illustrated by examining the vehicle weight and W/C LA variation
with vehicle length on Figure 2. These vehicles will be studied for the variety of_fiight

trajectories and heat protection systems stated above.



o
DISCUSSION OF RESULTS

4.1 TRAJECTORY ANALYSIS

4.1.1 ENTRY

4.1.1.1 Flight Path Definition

4. I. I. I. 1 Sub-Circular Entry

The flight paths for the sub-circular entry velocity flights were generated as follows:

(1) Starting with the initial velocity and flight path angle at 122 km (400,000 ft), the

vehicle is trimmed to the attitude for L/D = 1, and a zero bank angle is main-

tained. The vehicle is flown at L/D = 1 until a horizontal flight path is achieved.

(2) At pullout the pitch attitude is modulated to provide the lift necessary to maintain

horizontal flight. A zero bank angle is held throughout the horizontal flight. The

pitch attitude is modulated throughout the horizontal flight until a predetermined

attitude is achieved, and then a terminal equilibrium glide phase is initiated.

The latter portion of the trajectory was flown in three different ways, namely:

"" gi ...L __ L/D L/D "(a) The ............. be wu_lequl.io_mm _Lu_ ns = max is achieved, -_,,_ _-_^

bank angle is maintained during the equilibrium glide.

(b) The equilibrium glide begins when C L = C L max" CL max and a 60-degree
roll angle are maintained during the equilibrium glide.

(c) Another equilibrium glide was flown at CL max as in item Oh), but with a
zero bank angle.

4.1.1.1.2 Super- Circular Entry

The flight paths for the super-circular velocities considered were generated as follows:

(i)

(2)

(3)

Starting with the initial velocity and flight path angle at 122 kin (400,000 ft), the

vehicle is trimmed to the attitude for L/D = 1, and a zero bank angle is main-

tained. The vehicle is flown at L/D = 1 until a horizontal flight path is achieved.

At pullout the vehicle is rolled while L/D = 1 is maintained until the lift vector

just balances the vertical forces on the vehicle, and a constant altitude is main-

tained. The horizontal lift vector effects a cross-range maneuver during the

horizontal flight phase. The roll angle is modulated to maintain horizontal flight

until the vehicle is eventually rolled back to zero bank angle.

When a zero bank angle is achieved, the vehicle commences a terminal equilib-

rium glide at the attitude for L/D = 1 and a constant zero bank angle.



4.1.1.2 Overshoot Boundary for Super-circular Entry

The overshoot boundary for the super-circular entry flight conditions was determined

in the following manner:

(1) For a range of entry path angles, the vehicle is flown in the attitude for

L/D = 1 until pullout (y = 0) is achieved.

(2) At each pullout flight condition, the required downward lift force necessary

to maintain constant attitude flight is computed.

(3) The available negative lift (-CL) , using the C L for L/D = 1, is computed.

The maximum available negative lift (where C L = CLmax ) is also computed.

A typical variation of the required negative lift and the available lift as a function of

entry path angle is shown in Figure 3. The intersection of the required and the avail-

able lift curves defines the overshoot boundary for the given entry velocity and W/CLA.
The entry path angle, determined by selecting the available lift for L/D = 1, is seen

to be only slightly steeper than the allowable path angle for C L = C L max; thus, the
selected overshoot boundary is slightly conservative. Figure 4 shows the overshoot

boundary (i.e °, minimum entry path angle) as a function of W/C LA for entry velocities
of 9144 m/sec (30,000 ft/sec) and 10,363 m/sec (34,000 ft/sec). The overshoot bound-

ary does not vary greatly with W/CLA for the range of W/CLA considered; a 50 percent

increase in W/CLA changes the overshoot boundary approximately 0.15 degrees.

Subsequent to the definition of the super-circular entry overshoot boundary, the

complete re-entry flight profiles were computed. Figure 5 shows typical altitude

time histories for the 10,363 m/sec (34,000 ft/sec) entry velocity condition. Note

the small difference between the flight profiles for the minimum and maximum values

of W/CLA. The typical velocity time histories shown in Figure 6 exhibit only slight

differences for the extreme W/CLA values. The overshoot boundary trajectories
represent flights which have the greatest flight time and consequently have the most

severe thermal soak, exposure.

4.1.1.3 Undershoot Boundary for Super-circular Entry

The undershoot boundary is determined by consideration of the g forces on the pilot

during the pullout phase of the re-entry flight. During pullout, the pilot experiences

acceleration in an essentially normal direction. A reasonable tolerance level for

acceleration in this direction is 5 g (Reference 1). The backward acceleration com-

ponent is relatively small, and since the tolerance level in this direction is large

(about 12 g's), normal acceleration is the critical factor. A 5-g normal acceleration

at pullout was taken as the undershoot boundary.

The undershoot boundary was determined by flying a series of pullouts with the attitude

for L/D = 1 and increasingly steep entry path angles. Figure 7 shows the variation

of pullout peak g's with entry path angle for the two super-circular velocities considered
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in this study. Theundershoot boundary (i.e., maximum entry path angle) is seen to be
approximately sevendegrees downfrom the horizontal. Oncethe undershoot boundary
was determined, complete trajectories were run for the two super-circular velocities
and the nominal weight and W/C LA . The heat flux histories for the undershoot boundary
trajectories are shownin Figure 8 along with the heat flux histories for two overshoot
boundary trajectories and a sub-circular re-entry case.

The undershoot boundary provides the severest trajectory from the standpoint of maximum

heat flux for a given value of W/CLA while the overshoot boundary provides the severest
trajectory for total heating. Since an ablative thermal protection system is most sensitive

to the total heat load and since it can be seen from Figure 8 that the values of the maximum

heat flux for the undershoot boundaries are so large as to prohibit the use of a re-radiative

system, the overshoot boundary is adopted, for the purposes of this study, as the design

trajectory for the super-circular cases. It should be noted that the thermal protection

system designs utilizing re-radiation is thus limited to the upper part of the flight corri-
dor for the super-circular cases.

The velocity-altitude histories for the undershoot, overshoot, and sub-circular cases are

shown in Figure 9.

4.1.2 ASCENT AND ABORT

4.1.2.1 Critical Ascent Abort

The critical conditions for abort on the ascent trajectory are those which produce

maximum heat flux, maximum total heating, and maximum total acceleration. Three

types of trajectories were flown for a family of points on the ascent trajectory prior

to orbit injection. The three trajectory types are:

(1) L/D = 1 constant

The L/D is held constant at L/D = 1, and the bank angle is maintained at zero.

This type of trajectory goes through a series of altitude oscillations until an

equilibrium glide condition is achieved.

(2) L/D = 1, 3-Phase

A pullout at L/D = 1 is made. When a horizontal flight path is attained, the

vehicle is roll modulated to maintain a constant altitude with L/D = 1 held

constant. When the roll angle is modulated back to zero, the vehicle begins

an equilibrium glide at L/D = 1.

(3) L/D max, 3-Phase
m-

Similar to item (2) but the entire trajectory is flown with L/D = L/D max

rather than L/D = 1.
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The maximum heat rate and total acceleration both occur just prior to the

initial pullout. Up to this point, the L/D = 1 constant and L/D = 1, 3-phase
trajectories are identical, so the maximum heat flux and total accelerations

are plotted for only one of the two flight modes. Figures 10 through 12 show
the maximum total acceleration and maximum heat flux as a function of abort

velocity on the ascent trajectory for the three boosters, the maximum and

minimum W/CLA , and the L/D = 1, 3-phase and L/D max, 3-phase flight
modes. In every case it is seen that L/D max results in more severe loads and

heating rates. In all cases, the maximum total heating was less than for the

critical re-entry flights. The effect of L/D on the maximum heat flux is large;

an increase in L/D from 1 to L/D max increases the maximum heat rate by as

much as 70 percent. The effect of L/D on maximum total acceleration is rel-

atively small: one g or less. The maximum total acceleration is seen to occur

for an abort at relatively low velocity on the ascent trajectory: from about 3000

to 4000 m/sec. The maximum heat rate occurs for abort at somewhat higher

velocity: from about 5500 to 6500 m/see. Several typical 3-phase flight

profiles (altitude vs. range) for aborts from the ascent trajectory are shown
on Figure 13.

4.1.2.2 Maximum Dynamic Pressure Abort

The maximum dynamic pressure abort condition for the ascent trajectory can produce

high values of total acceleration. The maximum total acceleration occurs at relatively
low altitude: approximately 8.5 kin. Figure 14 shows the variation of maximum total

acceleration with W/CLA for the Titan II, Titan III-C, and Saturn I-B. Figure 15 shows
time histories of total acceleration for aborts from each of the three boost trajectories

for the nominal _¢eight and W/CLA associated with each booster. It is noted that the
acceleration for the maximum dynamic pressure abort condition is in an axial direction

instead of normal as in the other critical ascent abort cases discussed previously.

Although the g's are numerically higher (in the axial direction) they are actually less
critical from a human-tolerance standpoint. The maximum acceleration in both normal

and axial directions must be considered in any actual vehicle design.
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4.2 FLOW FIELD AND HEATINGANALYSES

4.2.1 FLOW FIELDS

Estimated trimmed lift and drag for the M2-F2 vehicle are presented in Reference 2,

as derived from NASA-supplied and -reported test data. The methods of estimation

and a discussion of data limitations are contained in the reference.

Both axisymmetric flow field and arbitrary body methodology was applied to the problem

of estimating windward pressures at various angles of attack, then comparing these

theoretical results with surface pressure data and pertinent reports. The leeward

pressures followed the same procedure, except that more reliance was placed on

various data sources. The details of the analysis and presentation of data may be

found in Reference 2.

The pressure distributions for 0, 10, and 30--degree pitch angles, resulting from the

flow field and arbitrary body computations, wind tunnel data, and data interpolations,

data extrapolation, combinations, and comparisons, are presented in Reference 2 as

functions of X/L, the axial distance from the nose, and meridian angle, measured

perpendicular to the vertical plane of symmetry from the bottom centerline.

The pressure distribution data available for the fins and boat-tail areas is quite

limited. A definition of the local flow field in the fin/boat-tail region by use of

Schlieren/shadowgraph information was attempted.

The flow pictures obtained at Rhodes and Bloxsom did not have enough detail to enable

flow field definition, but did indicate the possibility of both a strong interaction

shock region at the base of the fin leading edge and a large area of separated flow on

the upper surface boat-tail area extending forward almost to the canopy for the M2-F2

model tested. The data from the fin pressure pickups just above, aft, and parallel

to the side meridian from the reported test data were not sufficient to define the

fin/boat-tail flow field, particularily since the F1, rather than the current F2, model

was tested.
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4.2.2 HEATING ANALYSIS

4,2.2.1 Model Test Results

A model test was performed to experimentally determine the heat transfer distribu-

tion over the M2-F2 vehicle at a 30-degree angle of attack for a Mach number of 22.

The technique used at Rhodes and Bloxsom employs a special temperature-sensitive

paint. The local heat flux is obtained by evaluating the local thermal coating color

changes with respect to a calibration sphere. The detail results of the model tests

are given in Reference 2.

4.2.2.2 Method of Analysis

4.2.2.2.1 Convective Heating

a. Attached

The stagnation heat flux for the M2-F2 vehicle was calculated using Lee's classical

laminar solution for hypersonic heating combined with Eckert's reference enthalpy

relationship. The equation for this is given (Reference 3) as:

1/2

Iv 2/3 P*
r

(i)

For body locations off the stagnation point, both laminar and turbulent heat fluxes

were calculated• The off-stagnation-point laminar heat fluxes were computed using

a compressible reference enthalpy relation based on Lee's solution. The equation

for the laminar heat.fluxes is given (Reference 3) as:

f)* /a*u r(hr-h w)• 0.389 e

EJ 1r 0"_* Ue r ds
0

(2)

The off-stagnation point turbulent heat fluxes were computed using the GE turbulent

integral equation employing Eckert's reference enthalpy relationship. The equation

for the turbulent heat fluxes is given (Reference 3) as:

13



.25 0.2 ./De)0.8 0.25• 0.0296 Pe u e Pe (_ * / _z e) (_ r

qt - 2/3 s 0• 2 (h r - hw) (3)

IJ ° slr OeUe /.Le r d
0

This equation satisfies both the momentum and energy integral equations and includes

the effect of a finite pressure gradient. The solution was obtained by use of the

Blasius incompressible flat plate skin friction coefficients modified for compressible

flow employing Eckert's reference enthalpy relationship.

All heat fluxes are based on real gas relationships and properties of air in chemical

equilibrium (Reference 4). In addition, the effect of entropy gradients has been

factored into the analysis even though these effects may be small for this vehicle.

b. Separated

The convective heat fluxes to the afterbody for the region of separated flow were

determined by semi-empirical methods developed from. flight test data from the

Mark 2 Re-entry Vehicle• Results show the convective heating for laminar and

turbulent separated flow, which are given (References 5 and 6) by the following

equations:

• 0.5 #e

qLD = 0.0192 ReA A (ho-hw) (4)

where

• O.8 /_e

qtD = 0.0069 Rez _ _ (tlo-hw) (5)

PeUe

ReA - D
e

4.2.2.2.2 Radiative Heating

The radiative heat flux to the vehicle from the gas cap was evaluated by the following

equation:

_r = A¢ o T4, ¢=f(p,T) (6)
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The emissivity was obtainedfor the various radiating species for a given value of
local density and temperature (References7, 8)•

There are a number of sophisticated programs available (Reference9) to evaluate
the incident and absorbed radiative heat flux over a re-entry vehicle for a non-
optically thin radiating gas layer. Theseprograms are very costly and complex
but produce accurate evaluations of the radiative heating. This sophistication is
only warranted when radiative heating is an important contribution to the thermal
environment. In most cases the more rigorous computations produce heat fluxes
which are lower than given above. The magnitude of the radiative heating for this
application is small compared to the convective; therefore only the incident, op-
tically thin radiation was evaluated•

4.2.2.2.3 Angle of Attack

The local heat flux distribution around a vehicle such as the M2-F2 at zero angle of

attack can be quite adequately evaluated by methods previously discussed except in

local areas where special interactions exist• Heating evaluations at large angle of

attack, however, are quite another matter. Rigorous methods of heating predictions

except for simple Shapes are not generally adequate. Engineering methods, however,

are available for predicting local heat flux distributions at relatively large angle of

attack for both laminar and turbulent flow (References 10 and 11}. Correlation

parameters have been developed to predict heating at angle of attack as follows.

Laminar flow - Windward Ray

)1
qL (P* D*u e ) K + 1 (hr - hw)

= (p* _*u e) 3 (h r - hw)
61Lc_ = 0 _ =0 . o_=0

(7)

Laminar flow - Leeward Ray

qL __ (P* _*Ue ) 0_1 1/2 (h r-h w)

• = L(P* _-*u e ) cos J (h r _ hw)qL = 0 _=0 _=0

(8)

15



Turbulent flow - Windward Ray

0.8   01°21•25K+11
2.25

0.2

(h r - hw)

(hr-hw)(_= 0
(9)

Turbulent flow - Leeward Ray

L' J *::_tT P*u e)o_= 0
_= 0

h r - hw)

(h r - hw)
ff=O

(i0)

where

K=I+
sin _cot 0

cos _ + 0

For the " angle -_ aLL,wry'-lJullela_iuli_,--"_*"^-_ "_^ local -_+;_°prop=_ _ ^._.i _,,_aare h_ _aabove ui Ull_

on an isentropic expansion from the stagnation conditions on the downstream side of

the normal shock to the local pressure on the body• The methods on the windward

ray generally show that correlation with data is within + 15 percent for both laminar

and turbulent flow. The methods on the leeward ray show that correlations with data

are somewhat worse due to considerable scatter in the data. The leeward correla-

tions used, however, are believed to be conservative.

4 • 2.2 • 2.4 General Heating Approximations

Evaluations of the thermal environment for the wide variety of flights and vehicle

sizes and weights may be obtained without the detailed knowledge of the flow field by

utilizing simplifications to the local gas properties at the edge of the boundary layer

for hypersonic flow. It should be noted that all portions of the study requiring de-

tailed knowledge of the flow properties and heating such as for the REKAP analysis,

transition studies, etc., the more rigorous methods described previously were

utilized• The approximate methods developed for convective heat input are sum-

marized as follows (Reference 12):

Stagnation - Heat Flux

qs = f (Cs) Rn-1/2 p=1/2 V2 (11)

f(C s) = C sCT sCi s

16 C s = 3•47x 10 -9



• , " Laminar Heat Flux

qL = f (CL) S-1/2 p /2 V 3
(12)

f (cL)

C L = 2.74 X 10 -9 IP_I

= C L CT L Ci L Cs L

0.5 + 0.39 (7- 1)/7

-0.14

Turbulent Heat Flux

qT = f (CT) S-0.2 p 0.S V 3
(13)

f (CT) = C T CT T CiT Cs T

0.8 + 0.56(7- 1)/7

-0.46

+ 1.272

may be evaluated as:
The temperature correction (CTs ' £, T)

1 + 1.272 he/hs i]+ 1.272 he/h s + 2.72 hw/h

n

(14)
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n = 0.14for CTs andCTL

n = 0.46 forCTT

2
V_

hs--_ 2gJ

7- 1/7

i. 0 for
= CTs

where:

quantity units

Btu/ft2sec

Q Btu/ft 2

p Ib/ft 3

s,R ft

V ft/sec

4.2.2.2.5 Heating in Special Areas

The heating on the leading edge of the fin was established for the current application

by the following relation:

_I RN n= -- COS h

*LE' -'s 2 RLE e
(15)

where

2 2
cos A =l-sin 2 A cos o_

e

n=l.O

The value n can vary depending on the local flow conditions and sweep angle. It can

in some cases be as high as I. 5. Using n = 1 should produce conservative heating

estimates. It should be noted that the above relationship approaches zero as

A e __ 90 degrees. The local heating on the fin should not, however, be less than
that obtained along the surface of a cylinder based on the local flow properties at

the edge of the boundary layer as described previously.

The heating on the flaps and canopy were obtained by methods described previously

with the exception that the local boundary layer was initiated at the forward position

as required for the specific item, instead of from the stagnation point. Previous

model tests and other pertinent information were utilized in making these predic-

tions (References 13, 14).
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There are local regions on this vehicle, as in most other lifting vehicles, which are
subjected to increased heatingdue to interactions with various local flows around
joining abrupt sections. Suchareas are adjacent to the flaps, fins, canopy, rudder,
and all local gaps or protuberances on thevehicle. These areas are generally quite
small in width but may extend over a considerable length. The local heating in
these interaction areas canbe appreciably higher than the undisturbed region de-
pending on the local geometry, Machnumber, Reynoldsnumber, and flow condition
(laminar or turbulent) (Reference15}. These local areas, although small in area
compared to the total vehicle area, must be individually analyzed and then protected
by an adequateheat protection system.

4.2.2.2.6 Viscous Effects

A problem existing for some lifting vehicle flights is that of predicting aerodynamic

and thermodynamic characteristics at high speeds and high altitudes. The flow field

in this regime may be sufficiently rarefied so that the mean free path becomes too

large for application of classical boundary layer theory, but not large enough for

free molecule flow concepts to apply. Classical boundary layer theory applies at

high Reynolds numbers in the continuum regime. Continuum flow exists when the

local mean free path is small compared to the characteristic length of interest.

The rarefied gas flow regimes may be classified (Reference 16) according to the

degree of rarefaction as determined by comparing the mean free path to a charac-

teristic dimension as )_s/A "_ )_co/R b. A convenient classification (Reference 17) of

the various intermediate regimes between continuum and free molecule flow is given

in the order of decreasing Reynolds number as:

(1) Vorticity Interaction Regime

x /R < < where ~ A/R = p Ip
¢o D D co S

(2) Viscous Layer Regime

1/2
XJR__.b< < (

(3) Incipient Merged Layer Regime

X co/Rlo <<i

(4) Fully Merged Layer Regime

_. o/1Rb <1
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(5) Transitional Layer Regime

<1% >1

(6) First Order Collision Regime

>> 1

The M2 - F2 trajectories of interest, in terms of the general flight conditions repre-

senting these intermediate gas flow regimes, are shown as follows:

Regime

Vorticity Interaction

Viscous Layer

IncipientMerged Layer

Fully Merged Layer

Transitional Layer

Approximate altitude

Rb = 0.457m (1.5 ft)

km ft x 10 -3

76.2 250

85.3 280

93.0 305

100.5 330

109.6 360

For this application, the vorticity interaction regime exists from about 76.2 km

(250,000 ft) to 85.3 km (280,000 ft) and the viscous layer exists up to about 93 km

(305,000 ft) altitude. The other regimes occur at higher altitudes. All re-entry

flights pass through these regions but the comparable time and heating experienced

in these regimes are relatively low compared to the remaining portion of flight.

The pullout phase and constant-altitude phase of flight occur at lower altitudes. The

only regime of particular concern is the vorticity interaction regime which occurs

higher in altitude than the major and critical portion of flight but is close enough to

warrant further investigation.

4.2.2.2.7 Low Reynolds Number Effects

In high-altitude regions where the Reynolds Number is below that for thin boundary

layer flow, several effects appear which require special consideration. Ferri and

Libby (Reference 18) in 1954 began studies of the interaction between the vorticity

generated by shockwave curvature at the nose of a blunt body and the surface shear

generated vorticity of the boundary layer. This was one of several effects of the

same order of magnitude but quantitatively the most important for blunt vehicles in
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hypersonic flow. In addition to vorticity, other effects (Reference 19) occur due to
longitudinal and transverse curvature, velocity slip at the surface, temperature
jump at the surface, entropy gradients in the outer flow, stagnation enthalpy gradi-
ents in the outer flow, anddisplacement of the outer flow by the inner flow ( the
outer flow being inviscid andthe inner flow being viscous). These secondorder
effects are frequently referred to as vorticity effects.

An evaluation of these effects havebeenmade by Van Dyke (Reference19), Lenard
(Reference 20) and Maslen (Reference21), whereas Davis (Reference22), Ferri
(Reference 18), and Hickman (Reference23)have evaluated only the vorticity effect.
Of the methods available, Davis (Reference22) and Van Dyke (Reference 19)appear
to be the most complete and useful. VanDykes' (Reference24) calculation of the
secondorder effects as high Machnumber for a highly cooled wall show the heat-
ing to be:

q/qref = 1 + 0.483 _7

where

?7 = R _J=i/2
e

qref = heat transfer rate without second order effects.

The second order effects can be estimated for a typical M2-F2 flight.

As an illustration, the re-entry flight at velocity of 9144 m/sec (30,000 ft/sec) for

the nominal W/CLA vehicle was examined as follows:

time altitude _l[_tv=O

(sec) KM (ft x 10 -3) q/qmax Item (1) Item (2) Item (3)

50 96.2 (3161 0.16 1.129 1.05 1.49

1.16

i.14

I.14

i00 79.8 (262) 0.75 1.024 1.02

140 75.5 (248) 1.00 1.018 1.01

i000 75.3 (247) 0,45 1.019 1.01

Item (4)

i.i0

1.04

1.03

1.03

(1) Van Dyke (Reference 24)

(2) Hickman (Reference 23)

(3) Ferri (Reference 25)

(4) Davis (Reference 22)
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It is noted that the calculations of Items i, 2, and4 are in close agreement, while
Item 3 is high. It is believed that Items 4 and 1 are the most accurate estimates.
Therefore, at themaximum heat flux condition, it is believed that the secondaryor
vorticity effects represent a correction of about one to three percent on the stagna-
tion heating. Considerably less than this will occur at locations away from the stag-
nation point (Reference25). As the vehicle flies at higher Reynolds Number (lower
altitude), these effects will become negligible. The heating in the stagnation area

then should be increased about three percent to account for secondary effects.

4.2.2.3 Transition Criteria

The magnitude of the local heating during flight depends not only on the local pressure

and geometry of the vehicle, but also on whether the flow is laminar or turbulent.

The transition criteria should be the most reliable one available, based on the latest

available flight and ground test data. A great deal of study has been devoted recently

to the subject of transition (Reference 26). The transition from laminar to turbulent

flow is a function of such variables as roughness, angle of attack, mass addition

rate, wall cooling ratio, vehicle geometry (bluntness ratio, cone angle, nose radius),

and local boundary layer properties (Mach number, Reynolds number). Evaluation of

the influence of each of these specific variables on transition is currently beyond the

state of the art. There is, however, a wealth of both flight and ground test data which

have resulted in a reasonable transition criteria which can be readily evaluated for a

given vehicle application.

The transition criteria used in this study is shown in Figure 16. The transition

Reynolds number is based on the local properties at the edge of the boundary layer

based on wetted length, and is a function of local Mach number. This criteria is

based on thermal, observable, pressure, and radar tracking data, and it is believed

to be representative of realistic flights of both ablating and non-ablating bodies.

The effect of transition on the local heat flux and total heating can then be evaluated

from the flight path and local pressure distribution over the vehicle. The effect of

transition on total heating will be a function of W/CLA , vehicle length, and the posi-

tion on the vehicle expressed by the local heat flux ratio (q/qs)m for each re-entry

trajectory. The influence of transition on the total heating is shown on Figure 17 as

a function of the local heat flux ratio for re-entry at 7468 m/sec (24,500 ft/sec) for

various values of W/CLA and vehicle length (L). The influence of the various re-entry

conditions on the effect of transition is shown on Figure 18 for a nominal typical

value of W/CLA and L. The effect on total heating is greatest for the lowest re-entry
velocity flight, 7468 m/sec (24,500 ft/sec), and the smallest effect for the highest

super-orbital velocity flights. The effect of transition on the maximum heat flux is

shown on Figure 19. Only at very low heat flux ratios does the maximum turbulent

heat flux exceed the maximum local laminar heat flux. The maximum effect is

obtained for the lowest re-entry velocity condition.
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4.2.2.4 Reference Heat Flux Evaluation

The thermal environment for the M2-F2 will depend primarily on the flight path and

angle of attack time history. The maximum heating will occur at the stagnation point

for laminar flow and at a location off the stagnation point on the spherical section for

turbulent flow. The distribution around the vehicle will vary considerably from the

maximum values. The lowest heating will occur on the top surfaces and the after-

body, while the highest values will occur on the leading edges, pitch flaps, and wind-

ward side; the relative magnitude of each varies with the angle of attack. The heating

during ascent, abort, and re-entry must be evaluated as it will affect the heat pro-

tection system requirements.

The ascent phase stagnation heating is shown on Figure 20 as a function of time for the

three applicable boosters (Titan II, Titan III-C, and Saturn I-B_. The maximum refer-

ence stagnation heat flux reaches about 13.6 W/cm 2 (12 Btu/ft2-sec) (nose radius =

0.305m (1 ft} } for the Titan II booster. The maximum total stagnation heating reaches

about 1.18KJ/cm 2 (1040 Btu/ft 2) (nose radius = 0. 305m (1 ft) ) for this Titan II ascent

flight. Both the maximum heat flux and total heating associated with the ascent phase

is appreciably lower than either abort or re-entry, as will be shown later.

The typical re-entry convective stagnation heating is shown on Figure 21 for the three basic

trajectories of this study [(i. e., re-entry at 7468 m/sec (24,500 ft/sec) and re-entry along

the overshoot boundary at 9144 m/sec and 10,363 m/sec (30,000 ft/sec and 34,000 ft/sec)].
The maximum re-entry heat flux and total heating occur for flights which have the highest

re-entry velocity 10,363 m/sec (34, 000ft/sec). The stagnation heat flux for re-entry at

7468 m/sec (24,500 ft/sec) is higher than that for re-entry at 9144 m/sec (30,000 ft/sec)

due to the manner of defining the design trajectories (see section 4.1.1). The correspond-

ing maximum turbulent heating is shown on Figure 22 for these same trajectories. A com-

parison of these two maximum heating conditions shows that the highest values of heat flux

occur at the stagnation point during the early phase of re-entry (the pullout phase). It is

also evident that the maximum turbulent heating becomes greater than the stagnation values

only at the latter phases of re-entry. The maximum turbulent heating normally occurs on

the spherical nose away from the stagnation point near the sonic point. It is clear then that

the occurrence of turbulent flow will affect the total heating on the vehicle, depending not

only on transition but the variations of the local to maximum heating values or vehicle

position.

The maximum value of hot gas radiation will occur at the stagnation point for the

re-entry flights where the local temperature and density of the radiating gas are

maximum. Representative values of the hot gas radiation for these referenced re-

entry trajectories are shown on Figure 23 as a function of time. The maximum value
of the referenced radiation heat flux is only about 1.135 w/cm 2 (1 Btu/ft 2 sec) for

the highest re-entry condition. This represents less than one percent of the maximum

convective heat flux, and it occurs over a very short time period during the early

phases of flight. The total radiation heating is therefore negligible compared to the

total for re-entry. The radiation for the ascent and abort flights are considerably

less than for re-entry.
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The abort heatingwill dependon the booster and condition of abort for each ascent
trajectory. The typical abort stagnationheat flux is shownas a function time for
operation at L/D max on Figure 24 and at L/D = 1 on Figure 25. Calculations have
shownthat the critical abort conditions for eachbooster will in most cases result in
the maximum heatflux environment. Of importance is the maximum heat flux as
well as the maximum total heating condition. It shouldbe noted that the critical
abort mission for maximum heat flux occurs at a different condition than that for
maximum total heating.

It is evident that, compared to the convective heating during re-entry and abort, the
heating during ascentis negligible. The radiative componentof the heating is also
negligible evenat re-entry. The local heat flux during abort and re-entry must be
examined closely for the proper heat protection system design. Heat flux during
abort may well preclude the use of re-radiative panels in certain areas of the ve-
hicle. The maximum heat flux during the critical ascent abort may be higher than
for re-entry dependingon the booster and the re-entry condition considered. The
total heating during re-entry, however, is by far the maximum.

The critical thermal environment during operation in orbit will be the range in shield
temperatures experiencedduring flight. This dependsnot only on the orbit inclina-
tion but on the number of orbits and the vehicle surface conditions. The most criti-
cal orbit condition of cold soak is obtainedwhen the vehicle is in polar orbit with one
side continuously exposedto the sun. The maximum soak conditions expectedfor a
typical vehicle application having up to 17 orbits will be 394°K (+250°F) to 144°K
(-200°F). A changein orbit inclinations of 45 degrees may relieve these maximum
temperatures by approximately 27.7°K (50°F).

4.2.2.5 Reference Heat Flux Distribution

The heat flux distribution over the M2-F2 vehicle will vary with the position, angle

of attack, and flow condition (laminar or turbulent). The local heating can be con-

veniently compared to the maximum heating as a function of angle of attack. The

reference value will be the stagnation heating for laminar flow and the maximum tur-

bulent heating for turbulent flow. The local heating compared to the reference value

will depend primarily on the local pressure distribution and local flow conditions as

developed for bodies at angle of attack by methods of analyses discussed previously

in Section 4.2.2.2.

The local reference heat flux is shown as a function of position and angle of attack

for laminar flow on Figure 26 for the windward ray. The local heating for angles of

attack of 10, 30 and 40 degrees includes the effect of local increased heating due to

the influence of the flow properties (referenced density, viscosity, and velocity),
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and influence of streamline divergence (Reference 11). The range of angle of attack

of interest is between 0 to 30 degrees; however, 40 degrees was also included for this

windward ray because of interest in operation at CL max condition. The prediction of

local heat flux on the windward ray would be somewhat lower than shown if an account-

ing only were made for the local flow property changes, which are influenced primarily

by the local pressure as shown for the 10, 30, and 40-degree angle of attack conditions.

The referenced heat flux for the leeward ray is shown on Figure 27 for the various

values of angle of attack and as a function of local body station. The utilization of

Equations 4 and 5 for the heat flux evaluation on the leeward surface depends on the

magnitude of the standoff distance between the body surface and the boundary flow.

A good definition of this boundary surface across the leeward surface was not avail-

able for this configuration. The heat flux evaluation shown on Figure 27 was then

obtained by using corrections (Reference 27) for separated flow for both laminar

(0.56) and turbulent (0.60) heating. The local heating values were established by

methods described previously which primarily depend on the local pressure

distribution.

Similar heat flux ratios are shown in Figure 28 for the side meridian. It is noted

that the heat flux varies only a relatively small amount with angle of attack at the

side meridian. The corresponding variation on the windward ray is quite large due

primarily to the large pressure variation.

A typical variation of the local laminar heat flux distribution over the vehicle at a 30-

degree angle of attack is shown on Figure 29. It is of interest to note the contours of

constant heat flux along the vehicle side. A heat protection system based primarily

on the magnitude of the heat flux will ideally be designed along such lines. Of

course, for practical reasons, such application is not desirable due to large changes

in position with angle of attack and yaw. Local values of heat flux ratios for the fin

leading edge, flap, rudder, and canopy are shown on Figure 30 as a function of angle

of attack. The heating on the rudder is shown for deflections of both zero and 25

degrees.

The local turbulent reference heat flux ratio for the windward, leeward, and side

meridians are shown as a function of position and angle of attack on Figures 31, 32,

and 33, respectively. The turbulent heat flux ratio for the canopy, flap, and rudder

are shown on Figure 34.

4.2.2.6 Maximum Heat Flux and Total Heating

The maximum heat flux and total heating on the vehicle is of interest for the design of

the vehicle heat protection system. The maximum heat flux is of particular interest
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for the re-radiation type of system where the upper temperature limit is the

limiting criterion and the total heating the primary requirement for the ablation type

of system. The major concern for maximum heating may be limited to the re-

entry and abort conditions. A comparison of the maximum heat flux and total heating

for both re-entry and abort is shown on Figure 3 5. It is clear that the maximum heat

flux is obtained during abort at L/D max condition. This is reduced somewhat when

operating at L/D = 1, but it still will produce the highest heat flux for all cases,

with the exception of normal re-entry at 10,363 m/sec (34,000 ft/sec). The total

heating is highest for re-entry. For the abort flights, both the maximum heat flux

and total heating is lower for the L/D = 1 condition. It is evident that the heating

during ascent and, of course, over the top phase is small compared to both re-entry

and abort.

The maximum heat flux for the re-entry phase is shown on Figure 36 as a function

of W/CLA. The highest re-entry velocity, of course, produces the highest maxi-

mum heat flux. The maximum, heat flux for the other re-entry velocities are quite

similar, but the lower re-entry velocity produces the slightly higher maximum

values for a given value of W/C. A (see section 4.2.2.4). The maximum heat flux during

the re-entry occurs during pulloht for all re-entry conditions.

The totalheating during re-ent_, is shown on Figure 37 as a function of W/CLA.

The total heating increases with re-entry velocity and W/CLA. It should be noted

that both of the super-circular re-entry flights were performed in a similar manner

(see section 4.1.1.3) operating at essentially a constant angle of attack. The sub-

circular re-entry flight path was flown in a variety of ways (see section 4. i. i. 3.2),

but after pullout the flight had varying angle of attack. This total heating is shown

for three types of flights; namely, at L/D max, CL max at q_ = 0, and C L max at

q_ = 60. The largest value of total heating is for the L/D max flight. Flying at

C L max condition will reduce the total heating by about 25 percent. The compari-

son between the banked and unbanked flights shows that reduction in heating of about

an additional 5 percent occurs for the banked flight. The maximum heating for

this re-entry velocity was used for the heat protection requirements. The maximum

heat flux for all the sub-circular re-entry flights noted previously are identical,

since the initial pullout phase produced the maximum heating and was identical for
each case.
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4.3 THERMAL PROTECTION EVALUATION

The heat protection system application for the wide variety of vehicle sizes (weights

and lengths) and flight paths will depend on the system used, the materials, and the
thermal and structural performance.

4.3.1 MATERIALS

4.3.1.1 Ablation Materials

The ablation materials considered in this study included both an elastomeric shield

material (ESM) and microballoon phenolic nylon (MPN).

4.3.1.1.1 Formulation and Fabrication of ESM

a. Composition

The ESM 1000 Series (References 28 and 29) are char-forming materials consisting of

chemically blown, phenyl-methyl-silicone elastomeric foams. The ESM 1004 materials

used in this analysis contain from 6 to 20 percent of fibrous aluminum silicate, and are
3 3

available in densities from 0.32 to 0.96 g/cm (20 to 60 lb/ft ) depending on the con-

centration of blowing agent and curing conditions used in the particular composition.

A typical formulation, ESM 1004A P, uses the base elastomer RTV-560, contains
12 percent aluminum silicate fibers, and has a density of 0.56 g/cm 3 (35 lb/ft3).

A materials specification document (Reference 30) established the process and material

requirements, formulations, and the quality assurance provisions for free-foam

elastomeric ablators used for thermal protection as sheet stock or molded parts.

Specific formulation and processing information is GE-RSD "Company Proprietary."

Sufficient general information is provided to describe the process. All raw materials

are covered by the following GE-RSD materials acceptance specifications:

156A9874

128A5481

146A9268

147A1256

156A4410

RTV-560

Silicone Fluids

Catalyst for Silicone Rubber Compounds

Curing Agent, Stannous Octoate

Fibrous Aluminum Silicate

128A5500 Cabosil M-5.
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The identification of the componentelastomer materials as commercial products
follows:

RTV-560

A liquid synthetic rubber made by adding suitable compounding ingredients to a

silicone polymer that cures at room temperature after the addition of a catalyst.

Nuocure 28

Stannous octoate with a stannous tin concentration of 28 percent.

SF-96

Dimethyl polysiloxane silicone fluids are clear, water white, oily liquids. They

are non-toxic, inert, tasteless, and essentially odorless.

RTV-921

A proprietary blowing agent for foaming room-temperature vulcanizing silicone

rubber compounds.

b. Fabrication

1) General

The polymerization and cure of the siloxane polymers are condensation processes

producing water and/or alcohol as the volatile species. The silicone blowing agents

are materials containing silicon-hydrogen bonds which break to liberate hydrogen

under the influence of the same catalysts used to promote polymerization. The by-

product from this reaction forms a reactive species capable of reacting with itself to

form a resin, or enters into the overall polymeric network by reacting with the polymer.

There are three basic methods of fabricating ESM: sheet, molded, and spray. Sheet

material is formed by foaming large "buns" of ESM in an open pan mold which are

slit to desired sheet thickness. Molded parts are cast to the final desired shape without

pressure in low-cost molds. This technique is often used in the fabrication of relatively

thick sections and/or for application over surfaces of small radii such as leading edges

and stagnation areas. The spray technique is used as an alternate to sheet fabrication

and is particularly applicable where small thicknesses of ablation material are required;

e.g., 2.54 mm (100 mils).
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2) Base Formulation

For each fabrication procedure, the base formulation is made in the same manner;

it consists of the base elastomer, SF-96 silicone fluid, and the aluminum silicate

fibers. The aluminum silicate fibers are passed once through a rotary cutter equipped

with a perforated screen. The component materials are weighed and mixed for one

hour. This material is then passed through a three-roll paint mill three times with

controlled gap settings to incorporate and disperse the fibers into the base elastomer.

3) Sheet and Molded Fabrication

The next step in the process is identical for both sheet and molded ESM. A simple

"cake pan" mold is constructed for the sheet material and for molded sections on an

inexpensive, two-part, open mold of the final configuration. The mold surfaces are

cleaned by solvent wiping but are not treated with mold release. The proper propor-

tions of base formulation, blowing agent, and catalyst are weighed. The blowing

agent and catalyst are added to the base formulation and mixed for five minutes in an

open container with a high-speed propeller-type mixer. The material then foams and

cures for several hours either at room temperature or 344°k (160°F) in an oven,

depending upon the formulation, followed by an oven cure at 366°k (200°F) for several

hours.

The material is removed from the mold, and the skin is sanded or machined from the

top surface of the bun and the inner or bonding surface of the molded part. The mater-

ial is then post-cured an additional ten hours in an oven at 422 Ok (300°F) to complete

the cure and remove any unreacted, residual volatiles from the material. This final

post-cure dimensionally stabilizes the material.

After final trimming, the molded part is ready for application to the vehicle. For

sheet stock, one surface of the bun is machined flat. The bun may then be slit into
sheets of desired thickness with a commercial foam rubber slicer. The sheet thickness

tolerance can be maintained at +. 076 mm (+3 mils).

4) Spray Application

The same basic ESM formulation is used in the spray application as is used in the

fabrication of sheet stock. Freon is used as a diluent to adjust viscosity. During

the spray application, the low-boiling-point Freon flashes away, preventing solvent

entrapment in the applied material. The blowing agent is mixed with the base formula-

tion. The catalyst, also diluted with Freon, is introduced in the fan of the spray at

the nozzle, thus providing a continuous process.
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The spray equipmentconsists of a spray gun with a special catalyst nozzle. The flow
of all componentsis controlled at the trigger. Componentpressures are controlled by
five controlled outlets. The system is pressurized with either filtered compressed
air or cylinder nitrogen.

The spray would nominally be applied to a cleaned primed surface, either to the section
of the vehicle structure or to the surface of the selected refurbishment technique. In
this application, the material foams and cures in place, thus eliminating a separate
bonding operation. "Sagging" is prevented by the use of controlled concentrations of
thixotropic agents in the base elastomer. The final material thickness dependson the
amount of applied material. This technique is currently capable of providing thick-
nesses from 0.25 to 5.0 mm (10 to 200mils).

°

5) Manufacturing Experience

ESM sheet stock and molded parts are fabricated as standard production items, but

are proprietary to GE-RSD. Their manufacture and bonding are controlled by material,

processing, and quality control specifications including complete in-process inspection.

In addition to fabrication and application to the leading edge, ventral fin, and speed

brakes for flight test on the X-15, an ESM thermal shield has been fabricated in

sheet and molded sections for a re-entry satellite vehicle for a full-scale flight test.

The spray application of ESM was demonstrated in the field by coating the ventral

fin and lower speed brakes on the X-15-1 on September 3, 1965. Solid propellant

rocket cases have also been coated with spray ESM both in-house and in the field.

A brief summary of this material follows:

(1) ESM is a foamed phenyl-methyl-silicone elastomer containing controlled
concentrations of fibrous aluminum silicate.

(2) The fabrication of sheet and molded ESM is a standard production process

proprietary to GE-RSD.

(3) The application of spray ESM has been demonstrated but is not yet a standard

production item.

(4) The fabrication of ESM is reliable and relatively inexpensive, since it does not

require expensive tooling and equipment.

4.3.1.1.2 Formulation and Fabrication of MPN

a. Composition

MPN is a generic composition of phenolic resin, phenolic microballoons, and ground

nylon. Many modifications have been formulated of this basic composition (References
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31 to 37), all of which have beentermed MPN.
follows :

Phenolic Resin (BRP 5549)

Nylon (Zytel)

Phenolic Microballoons

Density

The basic formulation of MPN is as

25.0%

50.0%

25.0%

0. 576 g/cm 3 (36 lb/ft 3)

The BRP-5549 phenolic is a two-stage dry resin. It is commercially available and

does not have a limited shelf life at room temperature. GE specification No. 128A5511

defines the quality control tests required on this material for receiving acceptance.

The phenolic microballoons are also commercially available. This material absorbs

atmospheric moisture and must be stored in sealed, dry containers. The material has

a low auto-ignition temperature and cannot be dried in air at even slightly elevated

temperatures. In addition, the size of the microballoon spheres varies considerably

from lot to lot and between lots.* Mesh screening may be used to assure uniformity.

Zytel nylon resin molding powders are commercially available as solid granular

material, cube-cut or chopped. Fine mesh sizes are available from specialty grinding

suppliers. Zytel is characterized as rigid, highest melting nylon with high fluidity at

molding temperatures, good machinability, and high impact strength with maximum

stiffness. Zytel resins have relatively sharp melting points, 519 - 530°K (475-495°F),

below which they remain rigid and above which they have a fluidity like that of

lubricating oil. Zytel resins are insoluble in common solvents, alkalies, dilute

mineral acids, and most organic acids. All Zytel compositions may be dissolved in

phenols and in formic acid. Since all nylons are hygroscopic and will absorb moisture

from the atmosphere, the resins should be stored in dry, sealed containers. The

nylon does not melt at molding temperatures for MPN. The nylon partially dissolves

in the liquid phenolic resin during cure of the system. The rate of solution is depen-

dent on the particle size of effective surface area of the nylon, and on the time and

temperature during which it is in contact with the phenolic resin in the liquid state.

b. Fabrication

Phenolic resins cure by a condensation reaction with water as the by-product. Phenolics

must be cured either under very high pressures, 4.79 - 14.37 N/cm 2 (1000 - 3000 psi),

to maintain the water in the molded part or at lower pressures under vacuum to

remove the water of condensation as it is formed. The low pressure-vacuum technique

* Phenolic microballoons have a specific gravity of 0.25 to 0.30.
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must be used for MPN, since high pressures would crush the microballoons and
produce a high--densitypart.

Relatively small test samples of MPN have beenproduced to date and thesehave been
hot-press molded. NASA-LRC has fabricated small nose cap sections in a press using
matched metal molds with a vacuumtap. The materials were carefully dried and
blendedto reduce the volatile content during cure. Even with careful selection and
screening of the raw materials, the molded parts have varied in density within the
part and from part to part. The use of matched metal molds is almost mandatory,
since the blendedmaterial is in the form of a dry powder. Thus, matched metal
molds would haveto be fabricated for each surface contour for the M2-F2 vehicle.
Molding pressures of less than 7180 N/M2 (150psi) must be used to prevent crushing
of the phenolic microballoons. Tooling costs would be extremely high in the production
of large shield sections in a press, since the matched metal molds would also have to
be cored to maintain temperature control for steam under pressure.

A vacuum-bag autoclave molding technique provides adequatepressure and could be
used with matched metal molds in the production of full-scale parts. Shield sections
have not beenmanufactured with this technique, however, anda scale-up development
program would be required to define the process parameters.

The raw materials shouldbe blended by the fabricator in the molding of MPN to main-
tain quality acceptancecontrol over the components. After the process has been defined,
the sections wouldbe fabricated in matched metal molds in a vacuum-bag autoclave.
The part should bepost-cured in one or both of the mold sections to prevent distortion.

A summary of this material follows:

(1) MPN is composedof: 25 percent dry phenolic resin with minimum B-stage
development, 25 percent phenolic microballoons, and 50percent ground,
powerednylon resin.

(2) The raw materials must be stored and blendedunder very carefully controlled
conditions.

(3) The process for the production of large-scale, quality parts has beenneither
defined nor demonstrated.

(4) The process would be very expensive requiring matched metal molds for each
configurational part and vacuum, pressure, and temperature control during
cure.

r

4.3.1.2 Re-Radiation

In considering materials for a re-radiative thermal protection system, two candidates

were selected as representatives of different classes of materials, namely: (I)the
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high-temperature super-alloys which have found widespread applications in the jet

engine field, and (2) the more exotic refractory metal alloys. Rene'41 was selected

as the super-alloy, while TZM molybdenum alloy with a silicide coating was the

refactory metal alloy selected.

ReneW41 has a life expectancy of at least 100 hours in air at 1255°K (1800°F) and a

tensile yield strength of 30,000 psi. A comparison of significant properties of Renet41

at 1255°K (1800°F) and TZM at 1810°K (2800OF) is shown in Table 1. Emittance values

given are for both: (1) a pre-oxidized matte finish, and (2) a typical application for

Renet41 and TZM with protective coating. The TZM material would be more suscep-

tible to mechanical damage due to sand abrasion and pebble impact.

4.3.1.3 Insulating Materials

A re-radiative thermal protection system would require use of high-efficiency, high-

temperature thermal insulators to minimize heat inputs to the structure. Properties

of two of the most efficient insulators are listed below. Microquartz is a high purity

silica fiber available in a 0. 048 to 0. 096 g/cm 3 (3 to 6 lb/ft 3) density range and a

temperature capability of 1366°K (2000°F)o Dyna quartz (temperature stabilized micro-

quartz) has been utilized to extend the operating range to over 1810UK (2800°F). The

foamed pyrolytic graphite is a very-high-purity graphite produced by pyrolytic decom-

position of methane or other hydrocarbon gases and further processed to obtain a high-

efficiency insulator with temperature capability in excess of 3030°K (5000°F) and

densities ranging from 0.032 to 2.09 g/cm 3 (2 to 130 lb/ft3).

Either microquartz or foamed pyrolytic graphite (PG) could be used with Rene _ 41,

while the foamed PG is very effective as an insulator at higher temperatures. The

limitations on pyrolytic graphite lies in its tendency to oxidize in air at temperatures

above 1090°K (1500°F). However, oxidation rates are not significant below 1925°K

(3000°F), and the surface protection provided by the TZM panels at high altitudes

would result in a useful life comparable to that of the TZM panel.

4.3.1.4 Refurbishment Attachment Systems

Several factors must be considered in the evaluation of the selected refurbishment,

thermal protection, attachment systems. These include reliability, applicability,

ease of fabrication, application, and refurbishment cost and weight.

4o3.1.4.1 Refurbishment Attachment System Weights

A summary of the estimated weights of each attachment system for MPN (microballoon

phenolic nylon) and for both sheet and spray ESM (elastomeric shield material) is
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presented in Table 2. Theseweights include the weight of the refurbishment technique
and the weight of adhesiverequired to attach the refurbishment technique to the shield
and structure. A discussion of the basis for the calculations for each refurbishment
technique follows :

a. Elastomeric Bond

The weight of the elastomeric bond was based on the density of RTV-560 (1.44 g/cm 3)

(90 lb/ft 3) and a nominal thickness of 0.254 mm (10 mils). The thickness of this bond

is 0.254 mm + .127 mm (10 mils + 5 mils). The weight of the required primer was

considered insignificant and was not included in this estimate.

Although there is an effective bondline thickness in each refurbishment system in the

application of spray ESM of 0. 127 to 0.254 mm (5 to 10 mils), its weight is calculated

as part of the shield density. Spray ESM should only be considered in areas where

the shield thickness requirement falls between 0. 127 and 6.35 mm (5 and 250 mils).

Sheet ESM can be fabricated only in thicknesses down to 1.52 mm (60 mils).

b. Perforated Scrim

A 5.08 by 7.62 cm (2 by 3 inch) sample of the teflon-glass scrim weighed 0.4850 grams.

This weight is equivalent to 1.22 g/cm 2 (0. 025 lb/ft2). This scrim cloth has a thickness

of 0. 102 mm (4 mils). No allowance was made for the slight reduction in weight

accompanying the loss of scrim material in the perforations. The weight of 0.254 mm

(10 mils) of the elastomeric bond on the shield is added to the scrim weight for the

total weight of this attachment system.

c. Nut and Bolt

Based on the weight of a 3.18 mm (1/8 inch)-diameter, 1.27 cm (1/2 inch)-long steel

bolt, nut, and washer, the weight of a similar phenolic-glass bolt assembly was

calculated to be 1 gram. Assuming that five bolts of this size would be required for
each square foot, the estimated weight for this system is 0. 536 g/cm 2 (0. 011 lb/ft2).

This estimate can vary considerably depending upon the size and spacing of these bolt

systems. The reduction or addition of structural weight due to the holes in the

structure was not included in the estimate. Additional weight, which was not included

in this estimate, may also be required in the shield for the 589°K (600°F) backface

condition to provide a thickness of virgin shield material as the load bearing surface

for the washer.
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d. Elastomeric Pillars

The weight of this system can also vary considerably depending upon the diameter,

height and spacing of these pillars. For this calculation it was assumed that the pillars

were 3.18 mm (1/8 inch) in diameter, 3.18 mm (1/8 inch) high, and were spaced in

rows 6.36 mm (1/4 inch) apart. Using the RTV-560 d_nsity of 1.44 g/cm _ (90 lb/ft3),
the solid pillars would weigh 3.98 g/cm (0.0815 lb/ft ). For use with MPN, the

pillars would have to be fabricated with a 0. 254 mm (10 mil) RTV-560 backing which

would then have to be bonded to the MPN with an additional 0.254 mm (10 mils) of

RTV-560. For attachment to the ESM, the pillars can be fabricated and attached to

the ESM surface in one step, thus eliminating one of the two 0.254 (10 mil) layers of

RTV-560. If foamed pillars have sufficient strength to carry the shield load, an

additional weight reduction is possible.

The possible reduction in shield weight, especially in the case of the 300°F backface

requirement, due to the insulating function of this system, was not included in this

calculation. Additional consideration must also be made for this system used with

MPN in its potential as a compressible bond to provide shield integrity over the orbital

cycle, temperature extremes.

e. High-Temperature Loop and Pile

This all-metal, high-temperature material has a weight of 21 g/cm 2 (0.43 lb/ft 2) for

both the loop and for the pile as reportedby the manufacturer (Velcro Corporation).

This weight is doubled to include both the loop and pile and is added to two thicknesses

of 0.254 mm (10 mils) of RTV-560 used to bond the system to the shield and to the

structure. In an alternate approach, one-half of the system may be spot-welded to the

stainless steel structure, rather than adhesively bonded. Although the comparative

weight of this system is high, it still has significant potential in ease of refurbishment.

f. Mid-Temperature Loop and Pile

The same considerations apply in the use of this technique as in the previous section,

except for the spot-welding feature. The weight for this system is one-half the weight

of the all-metal closure for both the loop and for the pile.

g. Mystic Tape No. 7000

Mystic tape has a reported density of 3.07 g/cm 2 (0. 063 lb/ft 2) and is added to the weight

of 0.254 mm (10 mils) of RTV-560 required to bond the back of the tape to sheet ESM.
The attachment to the structure is made with the pressure-sensitive adhesive on the

tape surface.
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4.3.2 HEAT PROTECTION SYSTEM ANALYSIS

4.3.2.1 Performance

4.3.2.1.1 Ablation System

a. Analysis

There is a wide variety of ablation materials available for re-entry vehicle applica-

tions such as the M2-F2. The materials may be used as a single material or as a

composite as required for the application. The performance of ablation materials

generally depends on the type of material and on the manner in which it performs.

Some of the typical materials may be classified into 1) materials that melt and va-

porize, such as quartz, 2) plastics that depolymerize to a gas, such as teflon, 3)

materials that pyrolyze and form a carbonaceous char layer, such as ESM or MPN,

and 4) materials that ablate by oxidation and sublimation, such as graphite. Of

course, the plastic materials that form a char can also act in a manner similar to the

graphite of the char surface but are complicated by the other processes occurring

in depth.

The ablation of the char-forming material generally is considered to be the most

difficult to evaluate because of the complexity oi the processes going on in depth

through the material. When the material is exposed to a typical re-entry thermal

environment of a ballistic-type vehicle, the performance, and thus the material se-

lection, will naturally depend on the actual application. A material ideal for a very

high, short-time heat pulse generally will not be ideal for a glide-type re-entry hav-

ing a low-heat-flttx, long-time environment. However, the mathematical model used

to describe the performance of the materials usually can be described in a similar

manner. The external environment when imposed on the material will cause the

process of ablation, char formation, and char removal.

The external thermal environment, in general, consists of a heat flux input caused

by convection, hot gas radiation, and combustion. This environment will cause the

surface temperature of the material to increase because of the heat conduction pro-

cess through the material. This increase in surface temperature will increase the

radiation away from the material, and it will decrease the convective heating, both

tending to reduce the net heat input to the material. When this surface material

reaches a given temperature, it undergoes chemical reactions that produce thermal

degradation. The charring ablators undergo these pyrolysis reactions and produces

gaseous products and a residual carbonaceous matrix, or char. The reinforcement

of the material, when used, is generally trapped in the char and undergoes melting

and vaporization or depolymerization. The char not only includes these but additional

materials that result from chemical reactions between the char and the reinforcement

material. The gases produced in the process are forced through the
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porous char into the boundary layer. This will introduce thermal energy by friction

and by chemical changes in the gas, because of cracking or recombination, and by heat

transfer between the gas and char. This gas flow through the material into the

boundary layer will block a portion of the convective heat flux. As additional heat

enters the body, the reacting layer of material progresses deeper into the body.

The outer surface erodes because of oxidation and/or vaporization, depending on

the local temperature and pressure and also, in some cases, because of mechanical
failure of the char.

The preceding description of the process can be formulated approximately by exam-

ining the external and internal heat fluxes. An attempt to describe this process is

done with a reaction kinetics ablation program. It is easily possible to make the

formulation much more sophisticated than is necessary and thus make the prediction

of performance too unwieldy. Therefore, it is necessary to employ a procedure of

reasonable complexity that will accurately predict the actual performance for a wide

variety of environments. The prediction will be based on establishing the net heat

flux and then evaluating the material performance.

1) Method of Analysis of Charring Ablators

The semi-empirical analytical model described below was used for the prediction of

the response of the charring ablators investigated in this study. The digital computer

model described (defined as REKAP-Reaction Kinetics Ablation Program} includes

the three significant regions of interest in the interaction and coupling between the

material degradation and the hypersonic environment: 1) the gas-phase boundary

layer, 2} the condensed phase, and 3} the interactions between phases.

The system of conservation equations used for this mathematical model are described

briefly. The equations describing the condensed-phase region are considered first;

the gas phase and interaction phase may then be considered as boundary conditions

for the solution of the complete charring ablation problem.

For any point in the condensed-phase region:

5__T + A H (p -Pc) Ae-AE/RT
V" hVT=DC1) 5t

+ i__3/2 5T m(VT ) +m T + _7

_5 HK 5 H K I
5T 51)

+Pg (1-B)3/2 (5"_ 5t + 51) -_-
(17)
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Where the term _7• k V T represents the heat conductedinto any element in the
condensedphase.

represents the heat stored in the condensedphase.

-A E/RT
A H (p - pc) Ae represents the heat absorbed in reaction•

fl)3/2 _ T • ]Cpg (I- pg --_ +m(_TT)
represents thermal energy stored in the

evolved gases.

The last two major terms in Equation (17) represent the energy absorbed in evolved

gas "cracking".

The evolved gas passing through any location x within the condensed phase in a given

time period is assumed to be generated by all elements interior to this location dur-

ing the same time period, i.e.

°

XBACKFACE

• /m = (P- Pc) Ae-AE/RT d x (18)
X

X

Within the condensed phase, the thermal conductivity and specific heat properties are

included as a function of temperature. Evolved gas-product enthalpy, specific heat,

and gas-product molecular weight are included as a function of both temperature and

pressure. At the backface,

0
3 BACKFACE

(19)

At the interface between the boundary layer gas phase and the condensed-phase region:

V " k V T = qc + qGAS + qCOMBUSTION - qSURFACE

RADIATION RADIATION

- _IMAs s (20)

TRANSFER

where the convective, gas radiation, and combustion heat sources are obtained from

independent analyses, although coupling exists between the mass and species of the

evolved gas products and the gas-phase boundary layer.
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qSURFACE = (_ _ T4

RADIATION

(21)

For the mass transfer effects

LAMINAR

• Ah

_9° = mw _lc

I °r l\ _g/ P

[i 0"38 (Cpg/CpBL) ¢ 1
_" -- e

(22)

(23)

(24)

The semi-empirical relations presented above are the result of extensive correlations

of mass transfer effects on the reduction of laminar and turbulent heat transfer as a

function of injected species, injectant rate, and local edge of boundary layer Mach
number.

Combustion of the evolved-gas species heterogeneously with the char layer and the

boundary layer is treated empirically by expressing the combustion energy source

term as a function of species and pressure•

The aerodynamic heating rates are determined by well-established methods for the

particular velocity regime of interest. The local heat flux for laminar flow (stagna-

tion point and other locations) and turbulent flow are obtained by Equations (1), (2),

and (3) given in Section 4.2.2.2.

The gas-condensed-phase boundary movement is controlled either by chemical ero-

sion resulting from evolved gas-char reactions or char-boundary layer reactions,

i.e., oxidation reaction or sublimation of the carbon residue, or by mechanical

forces resulting from aerodynamic shear, from evolved-gas-product internal pres-

sure force, by thermal structural forces, or by combinations of all three mechanical

forces. For silica-reinforced charring ablators, the surface boundary is normally

controlled by liquid layer flow and vaporization under the viscous shear forces at the

gas-liquid layer boundary.

For refractory-reinforced phenolics which form a dense char, the gas-condensed-

phase boundary movement is assumed to be controlled by boundary layer diffusion
oxidation and sublimation. The oxidation and sublimation of carbon in air has been
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analyzed in detail and confirmed experimentally over the complete temperature and
pressure range for laminar flow• The results were correlated, and the resulting
equations are:

For laminar andturbulent flow

• [ 109 -0•67 -11"05 x 10-4/Tw 1m = m D 1 + 2.64 x Pe e (25)

Where m D is the mass loss within the diffusion-controlled regime

• qc qc
mD = Q"_ = K 1 +K 2 (hr-CPB LTw)

(26)

The quantities K1 and K 2 are input constants• For turbulent flow, their values are

4240 and 5.77, respectively; for laminar flow 5370 and 5. 37, respectively. The rate

of front face recession is given by:

m T
= (27)

PSURFACE

The heat balance at the front face is given by:

• T • •

-K _7 T = qc + qGAS - qSURFACE - qMASS (28)

RADIATION RADIATION TRANSFER

where:

" ' " [1 -0.67 -ll.05xl04/Tw 1qc = qc - S* (396 x 108 ) Pe e (29)

The local boundary layer edge pressure, Pe, is an input quantity which is a function

of time; S* is a function of the recovery enthalpy•

For phenolic nylon, the surface boundary movement is controlled by a combination of

chemical erosion and mechanical shear according to the equations and limits, as

follows:

For surface shear stress values less than 718 N/m 2 (15 lb/ft 2) the char is assumed

to be removed according to the oxidation and sublimation relations assumed for

refractory-reinforced phenolic• Above surface shear levels of 718 N/m 2 (15 lb/ft2),
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aerodynamic shear appears to dominate, and the char layer thickness to the 589OK
(600OF)isotherm is given as

0.15
tCHAR- 4 + r (30)

The addition of microballoons (to phenolic nylon) makes the char somewhat more

frangible and therefore more susceptible to mechanical shear removel. But the

shear levels encountered for the M2-F2 environment -- much less than 238 N/m 2

(5 lb/ft 2) -- are so small that this type of erosion should not effect shield perfor-

mance (see Section 4.5).

For the silicone elastomer, ESM, the front face surface recession has been cor-
related as

= f (Pe' qAERO' p) (31)

The heat balance at the front face is then

V • KT = qc + qRADIATION + qCOMB. - qSURFACE

RADIAT ION

qMASS

TRANSFER

- (PcL) s (32)

In general, the analytical model used for this study provides reasonable agreement

with ground test data. Since all results are normalized to a reference thermo-physi-

cal value, greater sophistication in the analytical model used over that described was
not required •

The REKAP program, with its developed and proven capabilities, has been used by

GE-RSD in the design of re-entry vehicles for a number of successful ballistic and

satellite flight test programs• Using REKAP, RSD has obtained excellent correla-

tions of experimental and theoretical data on temperature responses and internal

degradation on ESM subjected to typical thermal environments encountered on the

upper surface and stagnation region or lower surface of the X-15 lifting vehicle.
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b. Ablation System Performance

The performance of the two reference ablation materials (ESM and MPN)* was studied
by REKAP analysis for a number of typical thermal environments for each of the three
applicable re-entry velocities.

The REKAP analysis provides the temperature and material density as a function of
depth through the material based on the heat flux input specified at the surface as a
function of time, as described previously in Section 4.3.2.1.1.1. The performance
will then dependnot only on the material but on the heat flux that varies over the body
and with re-entry condition. Typical performance calculations are shownon Figures
41 to 44 for a re-entry velocity of 9,144 m/sec (30,000 ft/sec). Figure 41 showsthe
location in depththrough 0.576 g/cm 3 (36 lb/ft 3) MPN material for temperatures of
422OK(300°F) and 589°K (600°F) as a function of time for several typical heat flux
locations from the stagnationpoint to points with less than ten percent of stagnation
values. The degradationand ablation are shownon Figure 42 as a function of time for
these sameheat flux conditions. The degradation shownrepresents the distance from
the front face to a point where the density is 95percent of the virgin material density.
The amount of ablation shownrepresents the amountof erosion calculated for these
same conditions. It is notedthat there is no erosion calculated for the low heating
condition.

Similar performance calculations for 0. 465 g/cm 3 (29lb/ft 3) ESM are shownin Figure
43 for the location in depth of the specified temperatures and in Figure 44 for the amount
of degradation and erosion as a function of time. For this material there is no erosion
for the lower two heating conditions shown. The performance of ESM is such that for
heat fluxes of about34.1 w/cm 2 (30Btu/ft 2 sec) and lower, there is essentially no
erosion.

It is of interest to establish the influence on material performance of extendedsoak-
out times additional to the flight path requirements.** Therefore the effect of pro-
longed soak-out time was studied for the two backface temperature conditions 422°K
(300OF)and 589°K (600°F) and for the two ablation materials (MPN, ESM)which were
of prime interest in the M2-F2 Program. Emphasis was placed on low heating condi-
tions becauseof their applicability to the major portion of the vehicle. The M2-F2

*The performance of the ESM and MPN was based on the material properties pre-
sented on Figures 38 to 40 (also see Reference 38) and Section 7.1.

**A brief study was made to determine the possible effect on the nominal trajectory by
including a typical landing maneuver during the latter phaseof flight. It was deter-
mined that, in general, the execution of landing would result in a flight time about the
same as the total time established for the nominal trajectories with negligible change
in the total heating.
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shield requirements are based on the maximum allowable backface temperatures
cited previously for trajectories of about2400seconds. A study was made, for refer-
ence purposes, on the effect of an additional 1000-secondsoak on these requirements.
This study indicates that it is a function of both the location on the vehicle and the allow-
able backface temperature. In the highheat flux regions, the backface temperatures
will rise somewhatbeyondthe allowable temperatures, at the end of flight, for both
ablation andbackface materials.

In the low heat regions, the backface temperature peaks at approximately 3200 sec-
ondsfor the aluminum system. The backface temperature for ESM, shownon Fig-
ure 45 as a function of time for total heating of about 5.56 KJ/cm 2 (4900Btu/ft 2} is
typical for the low backface temperature condition (aluminum structure}. The tem-
peratures at the extendedtime are between22.2 to 77.8°K (40 to 140OF}higher for
material sized without consideration of soak. Approximately 5.68 to 11.35 J/cm 2
(5 - 10 Btu/ft 2} would have to be removed to maintain the low backface temperature
condition. With a steel structure, the backface temperature peaks at about 2200
secondsfor the ESMmaterial, as shownon Figure 46. The maximum temperature
occurs before the extendedsoak-out begins and therefore the extendedsoak-out has
no influence on the backface temperature for this condition. Therefore, in the low
heat regions, the present steel system is sufficient for extendedsoak times, but the
aluminum system will showsomewhathigher backface temperatures unless there is
a small amount of cooling.

c. Heat Shield Requirements

The ablation material performance calculations have been performed, for the various
re-entry velocities for a variety of local heating conditions. The application of this
individual material performance to local conditions, which differ from the calculated
points, may be accomplished successfully by using the total heating as the correlation
parameter (Reference39}. The total material degradation, erosion, maximum sur-
face temperature, and insulation requirements canbe correlated with total heating
based on a given re-entry velocity for a wide variation of local heating values that
represent various locations over the entire re-entry vehicle. The material func-
tional relations may be written as..

Total thickness

Total degradation

Total insulation

Surface erosion

Surface temperature

t t=t Dx (SF) +tin s

tD = tD (Qc' Mtl, traj}

tin s = tin s (TBF, mtl, traj}

te = te (Qc' mtl, traj)

TW = TW (Qc, mtl, traj)

(33)

(34)

(35)

(36)

(37)
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The maximum surface temperature for both MPN and ESM is shownon Figure 47 as
a function of total convective heating. The maximum temperature shownwas insen-
sitive to the re-entry trajectories studied but, rather, was a function primarily of
the total heating. The ESM produces surface temperatures of about 111to 277°K
(200to 500°F) higher than MPN, dependingon the magnitude of the total heating.

The degradation calculated for ESMmaterial is shownon Figure 48 as a function of
total heating. It is noted that the degradation is essentially identical for the lower
two re-entry trajectories for a given value of total heating. It shouldbe noted, how-
ever, that any individual local position on the vehicle will have a different degraded
thickness for eachtrajectory, since the total heating differs (for that point) for each
trajectory, as discussedpreviously. There is considerably higher degradation
produced for the highest re-entry velocity trajectory. The high heat flux exhibited
by this flight produces relatively greater degradation for ESM than that exhibited for
the lower re-entry velocities. The degradation shownis based on the material thick-
ness at which the local density is 95percent of the virgin material. The correspond-
ing degradation for MPN is shownon Figure 49. The degradation for MPN is very
similar for the three re-entry trajectories for a given value of total heating; a dif-
ferent trend than that exhibited for ESM. It shouldbe noted, however, that the
degradation required for ESMat the two lower entry velocities is considerably less
than for MPN.

The insulation requirements for ESM is shownon Figure 50 as a function of total
heating for backface temperatures of 422 and 589°K (300and 600°F) for each re-entry
velocity. The corresponding insulation thickness for MPN is shownon Figure 51 as
a function of total heating. It is clear that the insulation requirement for each mate-
rial is considerably reduced for the larger backface temperature. It is also noted
that the insulation requirement even vanishes for both materials at the lower values
of total heating which occur over the major portion of the vehicle surface area, such
as on the leeward surface and on the aft regions of the windward surface.

The surface erosion for both ESMand MPN is shownon Figure 52 as a function of
total heating. Theerosion of MPN for all the re-entry velocities may be represented
by a single line, while the ESM erosion shows two distinct values similar to that
exhibited by the degradation. The surface erosion for ESM is substantially lower
than that for MPN except at the very highest total heating values for the high re-entry
condition. The low surface erosion characteristic is of importance in order to main-
tain the desirable performance characteristic during flight. Both ESM and MPN
have the characteristic that a higher density material may be addedas an outer layer
in order to reduce this erosion, if desired.

The ESM material used for these performance calculations has a density of 0. 465
g/cm 3 (29 lb/ft3). An outer layer having a density of about 1.04 g/cm 3 (65 lb/ft 3) can
be used to reducethe erosion loss. This outer layer canbe made of the samebasic
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material which permits essentially onematerial having graded properties without a
bond reliability problem. Sucha composite may reduce the erosion by an amount
that is almost proportional to the density; however, the weight loss will be about the
same. The MPN can also be made in a similar manner, with PN as the outer layer.
PN has a density of 1.2 g/cm 3 (75 lb/ft 3) compared to the basic density of MPN of
0.576 g/cm 3 (36lb/ft3). Combining the PNwith MPN, however, is a more difficult
process than making an ESM Composite.

4.3.2.1.2 Re-radiation System

One of the heat protection systems studied was re-radiation. The system require-

ments for this approach are very closely associated with the materials used and the

specific application. The prime area of application is in low heat flux areas, since

the applicable system is temperature-limited by the materials employed for the

system.

a. Analysis

The re-radiation systems evaluated were based on the following.

• Re-radiation materials - Rene'41, TZM with coating

Insulation materials - micro quartz (MQ)

foamed pyrolytic graphite (FPG)

Cooling - passive

active

The re-radiation system was designed to provide the same degree of protection as the

ablation system; that is, a maximum of 422OK (300°F) backface temperature with an

aluminum structure and 589°K (600°F) for a steel structure -- both exposed to the

M2 - F2 thermal environment. The re-radiation system was limited in allowable

maximum re-radiation temperature of 1255°K (1800°F) for Rene'41 and 1755°K

(2700°F) for TZM with coating.

A critical problem area in the design of metallic re-radiative shields is support of

the outer surface without introducing excessive thermal stresses in the primary

structure. The usual approach is to support a thin, high-temperature-resistant

metal surface some distance outboard from the primary structure with a minimum

of flexible supports. Insulation is installed between the thin metal surface and the

primary structure to achieve the required backface temperature. The idealized sup-

port 1) carries air pressure loads from the outer skin into the primary structure,
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2) is flexible enoughto allow differential expansionbetween the skin and the primary
structure, 3) is not a heat sink, 4) minimizes conduction of heat to the primary
structure, and 5)allows quick and easy panel refurbishment.

The attachment system in Figure 53Auses diamond-shapedoverlapping panels,
forming an external re-radiative erosion shield that is supportedby flexible attach-
ment clips welded to an inner attachment frame, also diamond-shaped. Eachdiamond-
shapedpanel is securely fastened at the aft apex by a single bolt through the vehicle
shell to a self-locking nut inside the stiffening ring. The forward edgesof each dia-
mond interlock with, and are restrained by, the adjacent panels in such a fashion
that they may freely expandunder thermal differentials but remain firmly anchored
to the vehicle. All external overlaps are in the downstream direction, avoiding local
flow and heatingproblems associatedwith forward-facing steps. Attachment bolts
are covered andprotected by installation of the following panel.

The secondre-radiative panel conceptis the clip attachment system, shownin Fig-
ure 53B. This basic concept is presently being tested by NASA Langley (Reference
40). It consists of a rectangular panel, corrugated to add longitudinal stiffness and
transverse flexibility to accommodatethermal expansion. The shield supports are
designedto essentially "fix" the panel at its center and to permit expansion away
from this point in all directions. Easy refurbishability is provided by the "rod"
attachment schemewhich also increases the conduction path length to the primary
structure. This design avoids threaded fasteners andaccess holes in the outer
shield. Insulation pads are retained betweenthe panel andthe vehicle skin.

The two re-radiation system concepts shownin Figure 53 represent refurbishable
re-radiative heatprotection systems capable of being fabricated from either Ren_41
nickel alloy or TZM molybdenumalloy. Since the corrugated panel has beenfurther
developed (Reference40) it was selected as the typical re-radiative heat protection
system for this study. (A closer detail of the panel and clips are shownon Figure 54.)
Using this system as a base, three radiation cooling conceptswere selected for the
detailed study. These systems included a completely passive system (heat shield,
insulation, air gap, and structure) and two active systems (heat shield, insulation,
with andwithout air gap, structure, and active cooling).

The thermal responseof the re-radiation system to the M2 - F2 environment was
determined by transient-conduction-solution computer programs. The material
properties usedfor the analysis are shownon Figure 55 for the specific heat and
on Figure 56 for the thermal conductivity as a function of temperature for the vari-
ous combinations of materials. Over the major portion of the temperature range of
interest for this application, the TZM material has a lower specific heatwhile the
Rene/41has lower thermal conductivity.
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The temperature histories for three typical radiation concepts are depicted on Fig-
ure 57as a function of time. As shown, for a given surface profile, the intermediate
temperatures vary, dependingon the system used. It is clear that for this applica-
tion, the maximum temperature occurs for a relatively short time. Since the outer
material is temperature-limited, this short time of operation will establish the extent
of application of the system. The active systems provide a more uniform constant
temperature with time at the structure, while the passive system backface tempera-
ture increases with time. The air gapprovides lower temperatures at the backface
for a given system and amount of coolant. The air gapwill require less total weight,
but there is a greater total shield thickness requirement. The typical temperature
profiles for each of these systems are shownon Figure 58as a function of thickness
for various flight times. The characteristic decrease in temperature in the air gap
is evident for both caseswith andwithout cooling. The thicknesses of insulation
selected for these studies were 12.7 cm (5 inches) for the passive system and 6.35
cm (2.5 inches) for the active systems.

b. Temperature Control

The re-radiation systems were designed for backface temperatures of 422°K (300OF)

and 589OK (600OF) for an aluminum and steel structure, respectively. Both passive

and active cooling of the interior structure were considered. The passive system is

the simplest and most reliable system; however, it has the disadvantage of requiring

a greater thickness that may limit its application to areas other than those severely

limited volumewise (the fins and rudders), and it will generally require greater total

weight for a given shield application, which can be a great disadvantage for any

critical application.

The active system concepts must consider reliability, complexity, refurbishability,

and overall system aspects, with the overall system weight being of prime importance

for this study. This involves a weight trade-off between passive insulation require-

ments and the combined weight of reduced insulation plus cooling system in order to

obtain the optimum thermal protection concept. Even if the active system did not show

a weight saving, it may be necessary in areas of the vehicle where the shield-structure

thickness is limited. Two basic approaches were investigated; namely, 1) a transport

system where the coolant is transferred through tubing to and along the surface to be

cooled, and 2) a passive concept where the coolant is stored at the surface in a gela-

tin or wicking matrix. Both open- and closed-loop systems were considered. The

closed-loop system contains a single-phase fluid (ethylene-glycol water solution)

which is pumped through tubes where the thermal energy is removed by convection.

The fluid is returned to a water boiler where the temperature is lowered by the re-

moval of thermal energy in the open-loop system the water temperature is increased

(and vaporized) within the tubes while passing along the surface being cooled. The

vapor is then discharged overboard.
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The active system selected for this study was the closed-loop system which has the
advantageover theopen-loop system in that it requires less weight, is more reliable,
and is easily refurbished. The passive-gelatin or wicking-matrix type was not used
primarily becauseof its disadvantage in refurbishability, effectiveness, and adapta-
bility to varying thermal loads that occur during flight.

The internal cooling system (Reference41} considered is of the water circulation
system type. Heatexchanger tubes, throughwhich thewater is pumped, are attached
to the back surface of the metal structural skin. The metal skin acts as a fin to con-
duct the received thermal energy to the water. The heatedwater, in turn, is pumped
through a boiler heat exchangerwhere the water is cooled downto 380OK(225OF)by
boiling, with the steam vented overboard. The cooledwater is recycled through the
coolant passagesattached to the vehicle skin.

The cooling requirements shownon Figure 59are presented as weight-per-unit-area
of an internal cooling system as a function of the peak-received-heat-flux. The
weights given are the minimum ones for systems having either an aluminum or a
stainless steel skin material. Theweight for the lower backface temperature
(aluminum skin) is somewhatlower than that for steel. The weight-per-unit-area
of the internal cooling system is composedof the weight of the skin or panel material,
the weight of the coolant tubes, and the weight of the coolant contained within the
tubes. In addition to theseweights, it is necessary to add the weight of the circula-
tion pump, the boiler heat exchanger, and the expendablecoolant and its storage
system to obtain the total weight of the internal cooling system. The weight of the
electrical power supply for the pumpwas neglected, since it is assumed that the
required power canbe obtained from the vehicle power source.

c. Heat Shield Requirements

The heat shield weight was obtained from both the insulation and coolant requirements

for various amounts of cooling. Typical shield weight optimization for the various

active cooling systems was obtained as a function of insulation thickness, as shown

in Figure 60. The minimum shield weight for the system using microquartz, air

gap, and active cooling to a maximum backface temperature of 422°K (300°F) is

about 15.9 kg/m 2 (3.28 lb/ft2). The minimum total weight (see Figure 60) is not

very sensitive to insulation thickness. A 20 percent decrease in insulation thickness

for the example shown produces a total shield weight increase of only two percent.

A decrease in total shield thickness may be desirable for special locations at the

expense of a small increase in shield weight.

The passive system could maintain the same backface temperature as the active sys-

tem simply by supplying the proper thickness of insulation. The typical amount of

insulation required for the passive system is shown on Figure 61 for both microquartz
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and foamed pyrolytic graphite. The large thickness required for the application makes
the passive system unattractive. About13.2 cm (5 in. ) of microquartz is required
for the passive system at the high backface temperature requirement. The require-
ments for foamedpyrolytic graphite are even greater.

A typical weight comparison for the various systems considered is shownon Fig-
ure 62. The system requiring the minimum weight consists of microquartz insula-
tion, an air gap, and active cooling. The use of pyrolytic graphite increases the
weight some five percent for the minimum-weight system. The active cooling sys-
tem without an air gap increases the weight some five percent, but the passive sys-
tem shows an increase of about 40percent for the conditions shown. The trade-off
of the desirability of decreased shield thickness by elimination of the air gap for a
weight penalty of five percent canbe made in many cases, dependingon the area of
application. The air gap is on the order of 1.27 cm (0.5 in.).

The weight of the coolant, plumbing, andinsulation canbe shownon Figure 63 as a
function of maximum heat flux for the re-radiation heat protection system. The
increase in unit weight with increasing heat flux and the increased weights for the
TZM system whencompared to Rene_41at similar conditions are quite obvious.

The total weight requirement for the re-radiation heat protection system can then be
presented in terms of the total heating for eachtrajectory for both re-radiating mater-
ials andbackface temperatures. The minimum shield weight is shownon Figure 64
for both ReneW41andTZM for the three re-entry trajectories. The weight shownis
based on the system that produces the minimum weight; namely, microquartz insu-
lation, air gap, and active cooling. Thelimits shownfor Renet41and TZM are
temperature-dependent. A maximum temperature of 1255°K (1800°F)for Rene_41 and
1755°K (2700OF)for TZM was used, which corresponds to a maximum heat flux of
about 11.35 w/cm 2 (10Btu/ft 2 sec) and42 w/cm 2 (37Btu/ft 2 sec), respectively.
It is noted that where applicable, the Rene_41 system will provide the lightest re-
radiation system. The extent of the TZM application, therefore, is shown only for
conditions in excess of 1255OK(1800OF). The effect of increased backface tempera-
ture, as noted on Figure 63, is quite small for this system (three to eight percent
weight saving). This is considerably smaller than the effect shownfor the ablating
systems discussed in Section4.3.2.1.1.

4o3o2.1o3 Ablation Over Re-radiation System

The heat protection system that has the ablation material over the re-radiation mate-

rial can extend the applicability of the re-radiation system to higher heat flux regimes.

The capability of this system still depends primarily on the re-radiator. The higher

the allowable re-radiation temperature, the more efficient is this combined system.

The outer ablation material, as a minimum, must be capable of preventing the basic

re-radiation surface temperature from exceeding its limiting capability.
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a. Analysis

The requirement for this system is dependent on the capability of each part of the

system (ablation and re-radiation). The application providing greatest efficiency is

obtained when the re-radiation material operates at its maximum capability and at

heat flux locations on the vehicle considerably in excess of the re-radiation material

capability alone. The use of the ablation system will extend from the beginning of

flight until a time in flight where the heat flux is equal to or less than the maximum

allowable limit for the re-radiation system.

The performance of the total system can be obtained for a given combination of abla-

tion and re-radiation materials by establishing the requirements in terms of total

heating by considering the re-radiation system applicable over a certain portion of

the total flight. The ablation system performance can be established from the REKAP

analysis as a function of the percentage of the total flight time for the system. The

degradation calculated for typical re-entry conditions for ESM and MPN is shown on

Figures 65 and 66, respectively. The performance for each material is presented

in terms of the total heating during flight and clearly shows the effect of flight time

on the degradation. The degradation is not necessarily proportional to the total heat-

ing. The requirement for the re-radiation system is presented in Figure 64 as a

function of total heating for both Rene _ 41 and TZM, as described in Section4.3.2.1.2.

The re-radiation system for this application is based on reaching the maximum al-

lowable surface material temperature during the given portion of flight.

Combining the ablation system with the radiation system produces the total weight re-

quirement as shown in Figures 67 and 68 for ESM-Rene_41, ESM-TZM, and MPN-

Rener41, MPN-TZM, respectively. The requirement shown is based on a safety fac-
tor of 1.2 on the ablation material. The minimum ablation material from a practical

standpoint needed.for the lower total heating locations was included as follows:

Material Minimum Thickness

ESM mm (inches)

bond 0.254 (. 010)

material 2.54 (. 10)

MPN

bond 1.02 (. 040)

material 2.54 (. 10)
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Since the combined ablation over re-radiation system will be used in areas where the
local heat flux reaches values higher than the re-radiation system alonecan withstand,
it is desirable to examine the minimum ablation required for the system. As the
critical environment exists for abort and re-entry, both must be considered. The
typical comparison of the stagnationheat flux variation for both abort and re-entry
is shown in Figure 69 as a function of time for the maximum W/CLA. Since the

maximum total heating occurs for re-entry, an ablation system will be sized pri-

marily for this application. However, since the critical abort flights may have

higher heat flux, the amount of initial outer ablation material must be capable of

withstanding the heating up to the point where the re-radiation material application

is satisfactory. This critical amount occurs close to the limit application of re-

radiation on the windward ray. The material performance is based on REKAP

analyses for the region near maximum heat flux. The material thickness for ESM

and MPN is shown in Figure 70 as a function of total heating. The typical minimum

ablation thiclmess requirement is shown in Table 3 for the most critical abort flight

(Saturn I-B, L/D max.) for various re-entry conditions for the TZM material appli-
cation. The requirements for the Rene t 41 material and for all conditions for other

less-critical abort flights show thicknesses which are considerably less than stated

in Table 3. The minimum thickness provided is adequate for the intended application.

4.3.2.1.4 Performance Comparison

The individual performance of the ablation, re-radiation, and ablation over re-radiation

heat protection systems were established in the previous sections. It is of interest to

compare the various systems to determine their applicability. The performance of each

system can be stated in terms of weight-per-unit-area as a function of total heating, as

shown on Figure 71 for ESM for both 422°K (300°F) and 589°K 600°F backface temperature.

The value of total heating for a typical trajectory essentially determines the applicable

location on the vehicle, subject to heat flux constraints. As shown, the high heating re-

gion is applicable roughly to the nose, followed by lower heating on the windward and lee-

ward sides. The weight advantage of both the re-radiation system and the ablation over

re-radiation system is clearly evident when applicable to the low temperature condition

for specific portions of the vehicle. The definite advantage for the ablation system for

the high temperature condition is also shown. The ablation systems shown include a

safety factor of 1.0. The corresponding comparisons for the MPN material are shown on

Figure 72 and similar trends are shown, as discussed previously.

4.3.2.2 Heat Protection System Application

4.3.2.2.1 Application

The various heat protection systems considered in this study include ablation, re-

radiation, and ablation over re-radiation. The application of each system depends
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primarily on the adequacyof the limiting parameter of the system and the most critical
environment to which it will be subjected on the vehicle. Although the low-density
ablation systemsused for this study (ESMand MPN) may be somewhat limited in
efficiency whenoperating at very high heat flux and shear conditions, the present
application of thesematerials appears adequatefor the comtemplated conditions over
all parts of thevehicle. The design requirement for the application, then is, essen-
tially total-heating-dependent for a given total flight time. In general, for a given
flight path, a greater material thickness is required as the total heating is increased
for similar backfacetemperature, safety margins, material, refurbishment techniques,
and thermal stress considerations.

The re-radiation system is temperature-limited, indicating that the application is
severely limited, dependingon the local environmental requirements. Therefore,
the use in this study of Rene 41 and TZM will determine the limit of application on a

vehicle exposed to a given environment. The maximum temperature for this re-

radiation system will determine the extent of application of this system.

The ablation over re-radiation system is essentially a combination of both the ablation

and the re-radiation systems. The usefulness of the composite is based primarily on

the re-radiation material capability-the higher the allowable temperature becomes,

the more efficient is the system. The ablation material is used to extend the tem_-

perature range of the re-radiation system to heat fluxes much greater than are

allowable for re-radiation alone.

The application of the various heat protection systems to the M2-F2 vehicle may be

determined by considering the thermal environment imposed during flight with the

limitation of the particular heat protection system. The ablation system, of course,

can be applied to any portion of the vehicle as desired. The only major difference

in requirement is the detailed ablation material thickness requirement, which will

vary over the vehicle.

The application of the various re-radiation systems to the different re-entry and abort

cases is shown in Table 4. Since the material is temperature-limited, not only re-

entry but abort must be carefully evaluated. Table 4 shows the application to the top,

bottom, canopy, fin, flap, and leading edge.

The composite type (ablation over re-radiation) heat protection system is partially

limited in application because of the individual component material capability. The

outer ablation material will be used during the initial phase of flight and will with-

stand the maximum peak heat flux imposed by both re-entry and abort trajectories.

The application of this system, then, will extend the use of the re-radiation material

over portions of the body subjected to higher heat fluxes than the re-radiation material

alone could withstand. This system would be used on the windward sides of the M2-F2

vehicle only. The nose, fin leading edge, flaps, and canopy would use the ablating
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system due to considerations of volume andreliability. It is noted that for this system,
the re-entry portion of flight will impose the most critical environment; therefore,
it is the limiting condition for the application. A typical heat protection system
application is shownon Figure 73.

4.3.2.2.2 Typical Joint Considerations

The heat protection system that appears most applicable and versatile for the M2-F2

application is the all-ablation system. With this system, the adaptability to many

other missions with quite different variations in local heating (e.g., yaw, other

trajectory modes, etc.) can be readily accommodated by the basic system. Since the

re-radiation system alone is not suitable for the entire vehicle, a combination of

various heat protection systems must be used with it. A mixture of ablation, re-

radiation, and ablation over re-radiation systems, each of different material com-

binations, may be used on one vehicle as discussed previously. The joint between

any two dissimilar heat protection systems will present a problem. Some typical

locations of joints and joint concepts are shown in Figure 74. There is a joint

similar to the others between the upper surface and the side of the vehicle in a longi-

tudinal plane, but this joint is subjected to a different flow direction. It should be

noted that the material slopes, tapers, and thickness shown are schematic. The

joint between the ablation and re-radiation surface will be designed so that as surface

erosion of the ablation material takes place, there remains a continuous surface

between the two systems and in no case is a forward facing step formed. It should be

noted that the erosion at the location of such a joint is usually very low. Since ESM

does not erode at heat fluxes of about 34 to 45.4 W/CM 2 (30-40 Btu/ft 2 sec) or below,

there will be no initial material build-up required between the adjacent surfaces of

the ablating and a re-radiation material of Rene _41 or TZM. The rearward sloping

outer ablation material shown in Figure 75A is just enough to prevent the possibility

of a forward step being formed during flight. The slope of the joint mating pieces

below the surface will be determined by the material properties and the thermal en-

vironment. The angle may be as high as 80 to 90 degrees in some cases. There are

other joint configurations (Reference 42) which, although more complex, can even

adjust to the required aligned position during flight.

4.3.2.2.3 Application of MPN and ESM to Special Areas

The thermal protection system for several areas of a lifting re-entry vehicle requires

special consideration. The following areas are considered with respect to require-

ments and possible design approaches using both MPN and ESM shield materials.
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a. Joints, Gaps

With ESM there are no gaps -- all shield sections are butt-jointed. With the MPN

thermal shield, gaps must be provided, the sizes of which depend on the panel size,

the differential coefficient of expansion of shield and structure, and the environmental

temperature range. Gap-sealant materials are currently available such as RTV-102

or RTV-108 that may be applied in the gap to thermally protect the underlying structure.
The sealants must have sufficient stress-strain and adhesive characteristics so as

not to fail when the gap size increases (when the temperature is lowered), and must

have a low compression modulus to allow the gap size to decrease when the temperature
increases.

b. Access Panels Interaction Zones

There will be special design considerations to minimize edge gaps between the thermal

shield attached to access panels and the thermal shield material surrounding the access

doors. With ESM, there need be no gap since the edges can be butt-jointed. There

must be gaps, however, when MPN is used as the thermal shield.

Edge gaps can be controlled _ ........ _ .... 1 _._.^1_ .......u_w_, _._L,I,_. _,._lu-_uv_u _ panels and the

surrounding thermal shield in several ways. One is shown in Figure 75. Here

templated matching edges are provided to eliminate the gap. The levels are oriented

to eliminate up-stream edge lifting.

An alternative solution is to apply a sealing fillet of ESM along the edges for the ESM

external shield, or a sealant such as RTV-102 or RTV-108 for MPN. This technique

has been successfully used by GE, and its desirable properties of adequate strength,

compatability, and rapid cure cycle have been established.

Access panels must be attached to the vehicle, usually by counter-sunk bolts as

illustrated in Figure 75A. Thermal shielding must be provided, in the form of plugs,

for the head of the bolt.

In the case of ESM, the plug can be removed by a device such as a cork-borer and

can be retained until the access panel is closed for the last time. The edges of the

plug are coated with a fast-curing silicone adhesive, and the plug is inserted into the

hole.

With MPN, there is more difficulty. The plug must be drilled out, and it cannot be

re-used to fill in the hole. A new plug must be machined from a different piece of

shield material. At the final closing of the access panel, the plug must be bonded

into the gap with a fast-curing adhesive such as an amine-cured epoxy.

54



c. Control Surface Gaps

This problem area includes the vertical and horizontal control surfaces where mini-

mization of heat shield gaps is require d . There is also the requirement that full

travel of these components must be unimpeded, that high-temperature, high-velocity

flow be eliminated or minimized into interior regions behind these components, and

that their actuating mechanisms be thermally protected.

For control of edge gaps around the boundaries of movable fins and rudders, a fiber-

reinforced ESM "hinge" for the leading edge, as shown in Figure 75B, is offered as

a possible solution. Fitted beveled edges are proposed for other edge gap regions.

The characteristics of the hinge are such that rotation and displacement can be accom-

modated, at the same time preserving a sealing action along the leading edge. The

hinge would be fabricated and tailored independently of the rest of the movable surface

thermal shield and would be fitted and attached separately. For the gap regions other

than at the leading edge, carefully fitted, matched beveled edges could be considered,

possibly with a reinforcing matrix for the increased edge stiffness to minimize the

joint gaps.

The ESM hinge could be used with either type of thermal shield. For the movable

surfaces, the required all-movable pitch, roll, and yaw control motions of the control

surfaces require relative rotation of the surfaces with respect to the fuselage. At the

same time, thermal covering and sealing must be provided. The available gap between

fuselage and inboard edges of the control surfaces may permit surfacing of these regions

with thermal shield. It appears to be desirable to consider high-density material for

this area in view of the limited clearance available between fuselage and stabilizers

and the need for preserving clearance for thermal expansion.

d. Expansion Joints

To provide a heat shield in the regions of fuselage expansion joints, the following

concepts appear feasible:

(i) The heat shield joint can be installed with an initial pre-stretched

deflection (applicable to ESM) which is partially relieved when the

structural expansion gaps close.

(2) The heat shield joint can be fabricated with low-density material

filling the joint such that at joint closing under elevated temperature,

the filler will be partially compressed.
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4.3.3 STRUCTURAL CONSIDERATIONS

4.3.3.1 Attachment Requirements

4.3.3.1.1 Ablation

The attachment requirements and refurbishment techniques (Section 4.3.1.4) will

require a specific weight for each system as shown on Table 2. Two candidate re-

furbishment systems for the MPN are elastomeric pillars and the nut and bolt system.

The elastomeric pillars were chosen over the nut and bolt system for the following

reasons:

(a) Pillars allow the shield to relieve itself of thermal strain.

(b) They provide a more uniform support for the prevention of flutter.

(c) They enable more uniform shear distribution.

(d) The bolt system will require the drilling of holes that will induce
stress concentrations.

Assuming a normal pressure of 1.43 N/cm 2 (300 lb/ft2), the stress level in the elasto-

meric pillars is equal to a compressive stress of 10 psi, which is negligible.

The three candidate refurbishment system for the ESM are mystic tape, loop and pile,

and perforated scrim. Based on the very high weight of the loop and pile system, it

was eliminated in favor of the perforated scrim and mystic tape which have similar

weights, 4.88 and 6.73 g/cm 2 (0.100 and 0.138 lb/ft2), respectively. The choice of

either one depends on the operating structural backface temperature and the desired

reliability of each of the systems.

The weight of the perforated scrim consists of teflon-glass plus an elastomeric bond

on the shield. The weight of the loop and pile includes the pile material plus two

thicknesses of RTV-560 used to bond the system to the shield and the structure.

The mystic tape consists of the material itself plus the RTV-560 required to bond the

back of the tape to the sheet ESM.

The resultant weight comparisons for various types of ablation materials and back-

face temperatures are shown on Figure 76 and, for all practical purposes, are in-

dependent of the type of refurbishment system used (those discussed above). The

weight of the refurbishment system is essentially constant for a given material and

vehicle size, since it can be reduced to a given weight-per-unit-area. The differences

shown for a given material for varying backface temperature simply reflect the

difference in total heat protection system weight, not the refurbishment weight.
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4.3.3. i.2 Re-radiation

Table 5 depicts the criteria that was used to calculate the weight of the re-radiative

system.

Weights for the outer surface material, supports and attachments, refurbishment

channels, and rods were determined from Reference 43.

The structural supports must be capable of carrying the external pressure loads and

shear to the vehicle substructure. These supports must also be capable of relieving

the panel of any thermal stresses resulting from the differential expansion between
the re-radiation panel and the vehicle substructure.

4.3.3.1.3 Ablation over Re-radiation

For this type of heat protection system, the same refurbishment system will apply

as in the case of the re-radiation panels. The ablation material will be bonded directly

on to the re-radiation panel, and after one flight, the entire panel can be replaced
with a new one.

4.3.3.2 Thermal Stress Consideration

Figure 77 shows experimental and analytical evaluation of the ESM ablative system

bonded to three different substructures; aluminum, steel, and phenolic glass. The

critical condition of cold-soak associated with orbital environment is considered.

Both applied thermal stresses and ultimate strength data are shown as a function of

the cold-soak temperature. The two test points available are:

(1) No failure of ESM/aluminum at temperatures less than

89°K (-300°F).

(2) No failure of ESM/steel at temperatures less than

89°K (-300°F).

The test points indicate close agreement with analytical predictions, and the results of

these curves indicate that the ESM/aluminum and ESM/steel are more than adequate

to survive the thermal stresses associated with the orbital environment.

Figure 78 shows the analytical evaluation of the MPN ablative system bonded to two

different substructures. Again, the critical condition of cold-soak associated with

orbital environment is considered. Both applied thermal stresses and ultimate

strength data are shown as a function of the cold-soak temperature. Material properties
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for the MPN material were obtainedfrom Reference 44which gives data from two
separate research institutions; Melpar Incorporated and SouthwestResearch Institute.
As shownin Figure 78, a discrepancy exists in the ultimate strength data of thematerial
at cold temperature. However, using the lower strength (Melpar) data, the material
appears to be capableof a cold-soak orbit environment of 150°K (-190°F). This
temperature is somewhathigher than the minimum cold-soak temperature for a polar
orbit, as discussed in Section 4.2.2.4. Although the thermal stress analysis was
conductedfor a shield/substructure thickness of 10, Figure 79 shows that this ratio
has negligible effect on the cold-soak capability of the material. It is noted that test
data are not available to verify the analysis, so the applicability of MPN is dependent
upon the accuracy of the material properties used. It shouldbe noted that experience
onvarious full-sized vehicles with materials such as phenolic nylon, which is even
stronger than MPN, exhibited limitations in their cold-soak application.

4.3.4 HEAT PROTECTIONSYSTEMWEIGHTS

4.3.4.1 Method of Analysis

Thermal protection system weights were established with the aid of a digital computer

program, WALRVS OATeight of .A_mes Lifting Re-entry Vehicle Shield). The approach

used in developing this program was 1) to use Fortran, a standard engineering com-

puter language, and 2) to use the GE time-sharing computer system. This computer

system (DSCS: Desk Side Computer System) is well-adapted to the type of program

considered here, and allows rapid program development in terms of elapsed time.

The results of the program are provided in terms of a weight listing for each of the

material systems for a given vehicle weight, length, and safety factor. Two types of

program output are available to the user: 1) a detailed weight list of 39 items, and

2) a subtotal weight list of seven items, along with the total vehicle shield weight.

The seven items included in the subtotal weight list are:

(1) Nose cap (5) Fins

(2) Upper surface (6) Control surfaces

(3) Lower surface (7) Canopy

(4) Sides

Input for the program is composed of five items: length, weight, safety factor, tra-

jectory selection, and the type of heat protection system that is desired in a given

vehicle location. The program has the capability of handling the abl_ttion, re-radiation,

and ablation over re-radiation heat protection systems. The referenced area, nose

radius, and lift parameter are then computed. Table of heating distribution and entry

heating, including transition effects, are used next to determine the local heat load
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at each location. Given the heat load, the shield thickness requirements for the
ablation, re-radiation, or ablation over re-radiation heat protection systems are de-
termined from a stored table, dependinguponthe type of system specified. The
necessary refurbishment weight is addedto the heat protection weight, resulting in
the net weight of the system for that particular local area. The weights are thengiven
as output in a manner previously described.

4.3.4.2 Weight Requirements for Refurbishment

The weight requirements for the refurbishment systems have been stated in Section
4.3.3.1 and are as follows:

(1) Ablation

(a) ESM-- 4.88 to 6.73 g/cm 2 (0.100to 0.1381b/ft 2)

(b) MPN-- 11.3 g/cm 2 (0.232 Ib/ft2)

(2) Re-radiation-- i0.2 g/cm 2 (0.209 Ib/ft2)

(3) Ablation over re-radiation - same as that for the re-radiation panel.

4.3.4.3 Heat Protection System Weights

4.3.4.3.1 General

Heat protection system weights are presented for an all-ablative vehicle and various

combinations of ablation, re-radiation, and ablation over re-radiation. The design

philosophy of a combined heat protection system can follow two approaches. In the

first approach ablative materials are used on those portions of the vehicle that ex-

perience heat fluxes too high for re-radiative materials, while refractory metal

alloys and super-alloys are used on the lower heat flux areas. In the second approach,

an ablative material is used to handle peak heating during early re-entry. During the

latter period, the ablator is removed and the re-radiative surface of the vehicle handles

the heat load. Both concepts present attractive features along with problems that

limit their range of application.

The limiting factor for the ablation over re-radiation system is the high temperature

capability of the bond attaching the ablator to the structure. At present, bond systems

are generally temperature-limited to a soak condition of about 644°K (700°F). The
thickness of the ablator on the vehicle varies and would be minimum where the ablative

system ended and the re-radiative system began. Since a ReneW41 shield can operate

at about 1255°K (1800°F) and a TZM shield at 1755°K (2700°F), the ablative system
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would require sufficient insulation thickness to prevent flow of excessive heat to the
ablator bond at the juncture area, since this would cause premature failure of the bond.

The other approachconsists of the re-radiator which is completely coated with an
ablator. The ablator functions during peak heating in early re-entry and is later
jettisoned to permit the re-radiative structure to take over during later stages of re-
entry. A methodof achieving a clean re-radiative surface hasbeen examined. By
incorporating a sheetof magnesium foil in the bondlayer, positive control in jettison-
ing the ablator maybe possible. Laboratory tests (Reference45) have shownthat
magnesium foil canbe used for this purpose.

Magnesium foil less than 0. 382mm (0.015 in. ) thick will ignite without melting. Since
burning magnesiumwill react with most compoundscontaining oxygen, a strip of foil
coated with a silicone elastomer over about 75percent of its length was ignited. The
magnesium burned under the silicone coating and left a white ash. This indicated
that the reaction betweenburning magnesium and the elastomeric bondmay be used
to destroy the bondand effect the removal of the ablator.

Another test was made on a sample heat protection system panel. A layer of RTV-560,
0.254 mm (0.010 in.} thick, was placed on a 5.08 x 7.62 cm (2x 3 in.) sheet of 0.788
mm (0. 031in. } aluminum° Strips of 0. 152 mm (0. 006in. ) magnesium foil were placed
on the RTV, and ESM-1004was then bondedon the prepared substrate. The first
layer of RTV protected the aluminum from the heat of the burning magnesium. One
edgeof the ESMlayer was peeled away to exposethe magnesium. A small weight was
attached to this edgeto simulate the peeling action of the air stream. The magnesium
foil was ignited andit burned, destroying the RTV bondwithout damaging the aluminum
substrate.

Since this conceptmay permit positive control of the removal of the ablator at command
time, transition from an ablative to a re-radiative system may be programmed. How-
ever, the 644°K (700°F} bondtemperature limit still would require sufficient material
of the ablator to insulate the bonduntil removal of the ablator is desired.

r ,

4.3.4.3.2 Total Shield Weight for Each Trajectory

a. Ablation

Figures 80, 81, and 82 show the ablator shield weights for the nominal vehicle (See

Figure 2) and various trajectories. The shield represents from about 9 to 24 percent of the

total vehicle weight, depending on the material, backface temperature, vehicle size, and

re-entry conditions. The shield weight ratio (Ws/WT) decreases with increasing

vehicle length. As indicated, the lightest heat protection system is the MPN for a

backface temperature of 422OK (300OF) and the ESM for a backface temperature of
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589°K (600°F). The MPN appears superior at low backface temperatures because of

its better insulating qualities. However, the ESM at the higher backface temperature

operates closer to the degradation temperature requiring a minimum of insulation.

Figure 83 shows the distribution of ablation shield weights in terms of the nose cap,

upper surface, lower surface, sides, fins, control surface, and canopy. As shown,

the lower surface provides the greatest portion of the shield weights.

The detailed weight comparison for one typical vehicle and trajectory application as

shown on the above-mentioned figures is presented on Table 6. The weights are given

for both ablation materials and both backface temperatures. The weight was cal-

culated for each individual section (39 total, see Figure 84), with subtotals shown for

the seven individual larger sections. For each material, it is clear that a large weight

advantage exists for the higher backface temperature. It is of interest to note that for

the nose cap, both ESM and MPN show similar weights at the 422°K (300°F}, but ESM

is lighter at 589°K (600°F). Both the ablating materials show similar weights for the

upper surface at 589°K (600°F), but MPN is the lightest at the lower backface tem-

perature. The other sections show that at 422°K (300°F), MPN is lighter but at 589°K

(600°F), ESM is lighter. The weight variations with materials and vehicle heating was

given in Section 4.3.2.1.1 .

b. Ablation Plus Re-radiation

This system consists of ablation in areas of high heat fluxes and re-radiation in the

areas where ablation is not required. Two types were considered: ablation plus

Rene' 41 re-radiation and ablation plus TZM re-radiation. Two types of ablation
]

material (ESM and MPN) were used with the two types of re-radiation material (Rene

41 and TZM). The heat protection system employing TZM also used Ren_ 41 where

applicable. This combination for TZM was used for greater reliability and minimum

weight since Rene _ 41 is a simpler system that does not require a coating and, in

addition, requires less weight for a given heating load. For ablation plus Rene _41

re-radiation, the ablation was used in all areas except where ReneW41 was used

(Section 4.3.2.2). Figures 85, 86, and 87 depict the shield weights for the ablation
plus Rene'41 re-radiation. For the backface temperature equal to 422°K (300°F),

the MPN shows the lightest weight system, and at 600°F the ESM is the lightest. The

shield weights are somewhat lower than those for an ablating system for the low back-

face temperature case, but the reverse trend occurs for the high temperature case.

This follows the same trend as the all-ablation system and becomes obvious from

Figures 88 and 89 which show that for the ablation plus re-radiation systems, the

ablator represents as much as 80 percent of the total shield weight.

Figures 90, 91, and 92 show the shield weights for the ablation plus TZM re-radiation

heat shield. For a backface temperature of 422°K (300°F), the MPN is the lightest

and for 589°K (600°F), the ESM is the lightest for the low backface temperature.
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Comparing the two re-radiation systems, the ablation plus Rene'4l is the lightest
system at a backface temperature of 589°K (600°F), whereas the ablation plus TZM
is lighter at 422°K (300°F).

c. Ablation plus Re-radiation plus Ablation over Re-radiation

This system consists of ablation and ablation over re-radiation in areas of high heat

flux and re-radiation in areas of low heat flux. Two types were considered; ablation

plus ReneZ41 re-radiation plus ReneW41 composite, and ablation plus ReneZ41 re-

radiation plus TZM re-radiation plus TZM composite. The ReneW41 and TZM composite

consist of an ablator directly over the re-radiation material.

For the ablation plus Rend 41 re-radiation plus Rene _ 41 composite, the following is a

breakdown of the location of each system.

Ablation - nose, fin leading edge, flap, canopy

Rene' 41 re-radiation - same as previous case

Rene _ 41 composite - all remaining areas

Figures 93, 94, and 95 depict the weights for the ablation plus Ren_ 41 re-radiative
t o o

plus Rene 41 composite system. For this type of system, use of the ESM for both

the 422 and 589°K (300 and 600°F) backface temperatures results in the minimum

weight.

For the ablation plus Ren_ 41 re-radiation plus TZM re-radiation plus TZM composite,

the following is a breakdown of the location of each system (see Figure 84)..

Ablation - same as previous case

Rene _ 41 re-radiation - same as previous cases

T ZM re-radiation

TZM composite - all remaining areas

Figures 96, 97, and 98 depict the weights for the ablation plus RenJ 41 re-radiation

plus TZM re-radiation plus TZM composite. As shown, the use of ESM for the high

backface temperatures results in the minimum weight system. The ablation material

for the combined heat protection system which shows minimum weight for the low

backface temperature depends on the re-entry condition application.

62



d. Comparison of the Three Heat Protection Systems

When comparing the various types of heat protection system based on weight, the most

important consideration is the allowable backface temperature. This study clearly

shows that the higher the backface temperature the lower is the weight of the resulting

heat protection system. In order to evaluate the various systems based on minimum

total weight, the weight of the substructure should also be considered.

Based on previous lifting vehicles studies conducted at General Electric, (Reference 51)

it has been shown that minimum-gage structure is the governing criteria between 360
and 644°K (200 and 700°F). As the structural backface temperature is increased,

the shield weight decreases. Since the structure is minimum-gage in design, the same

structure that would result at low backface temperature would suffice at higher tem-

perature. The optimum backface temperature would be the maximum allowable tem-

perature that the structural material could be subjected to without any substantial

loss in material properties. The structural weight for both the 422°K (300°F) and the

589°K (600°F) backface temperatures would be essentially the same. Aluminum and

titanium or steel are representative of typical structural materials for the application.

The shield weight comparison shown previously with both backface temperatures is

believed representative of the total heat protection system weight.

A comparison of the various heat protection system weights is shown on Figure 99 for

a typical re-entry condition. It is clear that for the low backface temperature condition,

the use of re-radiation and ablation over re-radiation on portions of the vehicle de-

creases the total shield weight. The extra complexity of this combined total system

may be warranted for the application if the weight reduction is desired. The MPN

ablation material shows somewhat lower weights for this low temperature condition.

When the backface temperature is high, the ablation system produces the lightest

weight system and there is virtually no advantage for employing the re-radiation or the

ablation over re-radiation system on portions of the vehicle. The ESM ablation

material produces the lightest weight heat protection system at the high backface tem-

peratures.
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4.4 REFURB_HMENT

4.4.1 APPLICATION OF REFURBISHMENT ATTACHMENT SYSTEM

The refurbishment cycle consists of a combination of processes which, generally,

provide for application of the thermal protection system to the structure, quality

checking of the shield material and attachment after application, and, after flight,

removing such remaining portions of the coating as are required to recycle the

vehicle. To be practical, a refurbishment cycle should be capable of field application.

This section will discuss the applicability, fabricability, and ease of application

and removal of each of the refurbishment attachment systems with MPN and ESM shield

materials. MPN can also be bonded to the structure with a high temperature adhesive,

such as HT 424 and Epon 934; however, this possibility will not be discussed, since

it is not refurbishable under this definition.

4.4.1.1 Elastomeric Bond

The elastomeric bond is applicable only to ESM for both the 422 and 589°K (300 and

600°F) backface temperature requirements. Although it is the least adaptable to

quick turnaround techniques, it does have the highest reliability at this stage of

development. The fabricated ESM is directly bonded to the primed structure with

the base elastomer. It is the simplest to fabricate, does not require modifications

in the structure, and is highly attractive for weight considerations.

It has been well characterized and qualified by extensive ground and flight tests, and

it is the standard bond system used with molded and sheet ESM, as described in

Section 4.3. I. i.i.

4.4. i. I. 1 Attachment

The procedure for bonding with RTV-560 is detailed in General Electric Material

Specification R6328 and Manufacturing Standing Instruction (MSI) 242370. The materials

acceptance criteria are listed for the adhesive and the metal primers in GE Acceptance

Specifications 156A98174 and 128A5489, respectively.

After the ESM shield sections have been dry-fitted to the structure, the structure

surface is wiped with clean unsized linen toweling, wet with acetone, until no residue

remains on clean portions of the cloth. The SS4004 silicone primer is then applied to

the structure surface by a clean white cloth to a thin uniform thickness. The RTV-560

is then mixed with 0.5 percent T-12 catalyst and applied to the structure surface. The

adhesive is rolled out onto the structure surface with a clean paint roller to a thickness
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of 0. 127 to 0.254 mm (5 to 10 mils). (For molded sections only, an adhesive layer

is applied to both bond surfaces. ) The shield material is then applied to the structure

surface, much like a "wallpaper" application, and the surface of the ESM is rolled

with a clean paint roller to assure wetting and to eliminate any entrapped air in the

bond. No pressure or external temperature is required to cure the bond. In areas

such as the nose, where thicker shield sections are used, straps may be used to hold

the shield in place during cure of the bond. Although the bond will cure sufficiently

at room temperature to permit handling after twelve hours, a cure time of several

days at room temperature is required to achieve full adhesive strength.

4.4.1.1.2 Refurbishment

For refurbishment after recovery, the shield material may be removed by either a

hand tool or a mechanical technique and virgin shield material reapplied as discussed

in the previous section.

ao Removal Techniques

1) Equipment and Solvents

(a) Putty-knife type scraper with sharpened edges.

(b) Paint scraping tool (Zipaway-Hunt Wilde Corp.) which has a

three-inch razor edged blade.

(c) Pneumatic drill equipped with a one-inch wide "disc-type"
metallic brush.

(d) Hand metallic brush with a metal softer than the structural

metal.

(e) Acetone and toluol.

2) Hand Tool Removal

(a) The scraper, either putty knife or scraping tool, is inserted in

a joint at the interface of the bond and shield. The shield is

removed in strips by scraping in one direction while maintaining

fairly even pressure on the blade.

(b) The remaining bond material is solvent-soaked with acetone and

grossly removed by rescraping.

(c) The surface is then wire brushed or scrubbed with copper or

aluminum wool for removal of the final residue.

(d) The metal surface is then solvent-wiped with toluol.
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Although handtechniquesare more time-consuming, certain areas of the structure
may require this procedure. A final wiping with a toluol-dampened lint-free cloth
will prepare the surface prior to bondingthe next virgin shield.

3) Mechanical

After stripping the shield by the hand method, the residual bond material may be

removed by high speed abrasion with a wire wheel. In this case, solvent-soaking

is not required. A vacuum cleaning inlet would be located near the wire brush to

protect the operator and the vehicle and hanger from the silicone dust.

4) Spray ESM

The application of spray ESM was included in the discussion on the "formulation and

fabrication of ESM." Although no separate bond system is used, the spray material

may be removed in the same manner as the sheet ESM. The scraping step may be

eliminated, and all the material removed by high speed abrasion where the ablated

shield thickness is less than 0. 102 mm (0. 040 inches).

4.4.1.2 Perforated Scrim

The perforated-scrim technique, also only applicable to ESM, is a compromise

between the elastomeric bond and the other refurbishment techniques with respect

to current flight and ground qualification and ease of removal. The scrim material

is a 0. 102 mm (0. 004 in. ) thin sheet of teflon-coated glass cloth. Elastomeric bond

or spray ESM does not adhere to this scrim. Holes are punched in this scrim and

the bond effected through these holes to the structure. The size and spacing of these

perforations can be selected to achieve attachment strength to meet specific design

requirements.

The adhesive is applied to the bond surface of the ESM. The shield is then applied

to the structure in the same manner as the elastomeric bond with the perforated

scrim between the shield and structure. After flight, the shield is removed by lifting

a tab end and peeling. Little force is required to break each of the attachment points

singly.

After shield removal, dots of the adhesive remain on the structure; these can be

readily removed by the wire brush technique described in the section on refurbishment
of the elastomeric bond.
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This technique hasbeen sucessfully demonstratedand flight-tested on sheetmaterial
and would be applicable to spraying ESMin the field. It may not be practical, however,
for high shear areas, suchas leading edges, where full adhesive strength capability
is desired.

The perforated-scrim refurbishment technique is illustrated in Figure 100A.

4.4.1.3 "Nut-and-Bolt"

The nut-and-bolt attachment system shownin Figure 100Bprovides a positive technique
for the attachment of the shield to the substructure and is applicable to both MPN and
ESM. The bolt would be imbeddedinto the insulative portion of the shield and fixed
through holes in the structure by a locknut at the inner side of the structure. A washer
would be used at the headof the nut to increase the area of bearing load on the shield.
A high temperature, load bearing, insulative material such as a glass-reinforced
phenolic, polyimide, or polybenzimidazole would be used in the construction of the
nut, bolt, and washer. The temperature capability of these materials exceedsthe
allowable limits of the thermal shield material. The size and spacingof these bolts
can be varied, dependingupon the structural design requirement.

This system can be fabricated by two different techniques. The simplest method
involves normal fabrication of the shield section. After qualification and machining,
cores the size of the washer could be madeto a designeddepth from the outer surface
of the shield. The bolt hole would then bedrilled in the center of this openingto the
baseof the shield. The bolts with washers would bedropped into this openingand
shield material, equal in shapeand size to the core, placed and bondedinto the cored
section. After final machining of the shield surface, the shield could be attached to
the structure mechanically. If a self-locking bolt were used, the shield would be
attached to the structure before the cores were refilled.

In a secondapproach, applicable only to molded MPN and molded ESM, the mold
would be designedso that the bolts wouldbe imbedded into the shield during the molding
of the shield material.

4.4.1.4 Elastomeric Pillars

The elastomeric pillars approach is the other method that applies to both MPN and

ESM. From a refurbishable viewpoint, it does not have particular advantages over

other methods for ESM, but it can be used with MPN to make it attractive. In this

instance, the shield is attached to the structure by a number of discrete pillars or
columns of RTV silicone rubber as shown on Figure 101A. As in the case of the

perforated scrim, the size and spacing of the pillars are designed to meet vehicle
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station requirements. In addition to refurbishment, the pillar approach provides an
insulating layer to the structure that could reduce shield weight and act as a compress-
ible bondthat would increase the low temperature thermal cycling capability of an MPN
shield system.

Sheetsof the pillar system are fabricated by placing a metal mold containing holes of
the size, shape, and spacingof the pillars into a tray of catalyzed RTV silicone rubber.
The RTV flows through these holes to the top surface of the fiat mold. After curing
in an oven at slightly elevated temperature, the excess material is cut from the top
surface of the mold. The pillars, which are attached to a thin skin of RTV on the
bottom surface of the mold, are removed from the mold. The skin surface of the
pillar system is next bondedto the inner shield surface with RTV silicones. The
shield sections are then ready for attachment to the structure. For attachment to
ESM, the pillars can be fabricated and bondedto the surface of the ESMin one step,
thus eliminating one of the bondingsteps.

An adhesive layer is applied to the structure as in the case of the elastomeric bond
system. The shield is held in place onto the structure while the bond cures and
attaches the endsof the pillars to the structure.

For removal andrefurbishment, a cutting tool would be inserted betweenthe shield and
structure, the pillars cut, and the shield lifted from the surface. The remaining
bondmaterial wouldbe removed as in the case of the elastomeric bond system.

4.4.1.5 Loop and Pile

Loop and pile is a fabric fastening technique that has been adapted for rapid shield

refurbishment. The hi-temp loop and pile is completely constructed of stainless-

steel loops and stainless-steel piles integrally fabricated into a stainless-steel backing.

The mid-temp loop and pile is a silicone resin-impregnated woven tape with stainless-

steel loop and pile surfaces woven into the backing tape. It has the potential of having

the shortest turn-around time of any refurbishment technique, but is only applicable

to ESM as shown on Figure 101B.

Either the loop or the pile side is bonded directly onto the structure with the RTV

elastomeric bond or other high temperature adhesive system and remains permanently

attached to the structure for successive flights. For the hi-temp material only, the

material may also be spot welded to the structure rather than adhesively bonded. The

sheet and molded ESM is attached with the elastomeric bond to the other portion of the

tape, cut to pattern, and attached to the structure by hand pressing in place.

After flight, the shield is removed by exposing a tab end and peeling. The installation

process is then repeated for the following flight with prefabricated shield sections.
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Mystic Tape No. 7000

The pressure-sensitive tape, Mystic No. 7000, is a 0.254 mm (0.010-in.) thick

composite of fiberglass tape and pressure-sensitive silicone adhesive. The system

can only be used with ESM and is only applicable for the 422°K (300°F) backface temp-

erature condition. The system may be applied to the structure in two ways, as

illustrated in Figure 102. The tape may be rolled onto the structure and the shield

material attached to the tape with the elastomeric bond (Figure 102B). The pressure-

sensitive tape may also be pre-bonded to the shield material, and after cutting to

pattern, this system could be applied to the structure by rolling in place after removal

of the tape's adhesive protection sheet (Figure 102A).

For removal after flight, a tab end is exposed and the tape and ablated shield material

are stripped from the surface of the structure.

4.4.1.7 Discussion

Summaries of the weights and applications of the refurbishment systems to the design
criteria for each shield material are shown in Table 2.

Each of the proposed refurbishment systems has attractive features with respect to

application, reliability, cost, and weight. With the exception of the elastomeric

bond, which is well-characterized, additional development effort is required on each

system on scale-up and application data generation and thermo-mechanical analysis

before a quantitative selection can be made of the most promising system for this

application.

Stewart and Bloom have evaluated these refurbishment techniques against the system's

criteria of cost, safety, and time (Reference 46). They concluded that the elastomeric

bond, the mechanical attachment, the loop and pile, and the high temperature tape

systems have the greatest potential for elastomeric thermal shields for payoff through

further development. Their rating of each system against vehicle design requirements
are shown in Table 7.

4.4.2 ESTIMATED COST OF REFURBISHMENT

A rough-order-of-magnitude (ROM) cost estimate has been prepared for refurbish-

ment of an all ESM shield system for the M2-F2 vehicle with an elastomeric bond.

This estimate is based on a vehicle of 4536 Kg (10,000 lb) weight, 7.92 mm (26 ft)

length, 61.4 m 2 (678 ft 2) surface area. Calculations were made for shield weights

of about 409 and 1040 Kg (900 lb and 2,285 lb) for the 589 and 422°K (600 and 300°F)

backface temperature conditions respectively. For cost purposes, we assume that
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90 percent of the shield weight will be sheet ESMand 10-percent molded ESM. The
cost includes fabrication of the shield material, application to the structure, and
removal after flight which encompassesthe refurbishment cycle. The estimate
covers a range for each shield weight dependingupon minimal and nominal quality
control coverage, shield qualification criteria, etc. Noallowance is made for the
additional cost involved in fabrication and application of material to special application
areas. The material costs includes molds, tooling, and normal production control
activity. The estimate is basedon a single refurbishment unit that shouldbe reduced
to somedegree for multiple refurbishment applications. Other refurbishment
techniques wouldgenerally require less labor for application and removal, but the
fabrication costs would be somewhathigher, dependingon the system.

The following assumptionson cost of fabrication, application, and removal should in
no way be consideredbinding or official estimates from the General Electric Company
due to the manyvariables inherent in a given program.

ROM cost basedon single unit:

Material (includes labor and OH for fabrication)

422°K (300°F)

90% sheet stock at $ ll0/Kg ($50/lb) 936Kg {2,057 lb) $102,850

10% molded at $220/Kg ($100/lb) 104Kg ( 228 lb) 22,800

TOTAL 1040Kg (2,285 lb) $125,650

589°K (600°______F)

90% sheet stock 368Kg ( 810 lb) $ 40,500

10% molded 41Kg ( 90 lb) 9,000

TOTAL 409Kg ( 900 lb) $ 49,500

Application (same labor and materials for both backface conditions)

Surface preparation

Fitting and bonding

Material $ Labor (hr) Labor $ (@ $15/hr)

20 60 900

240 320 4,800

Removal

Shield removal 80 235 3,525
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Material $ Labor (hr) Labor $ (@ $15/hr)

Special Equipment

Pneumatic brushes

Pneumatic scrapers

Walk-in refrigerator, etc.

1600

7OO

3500

$6,140 $9,225

SUB-TOTAL $15,365

Cost of fabrication $125,650 $49,500

TOTA L $141,015 at 422°K

(300°F)

$64,865 at 589°K

(600°F)

A second estimate has been made based on a ROM manufacturing cost prepared for

fabrication, application, and removal of sheet and molded ESM to the X-15-2 aircraft.

This estimate was based on a quantity of 35 units and does not include quality control

costs. Gross assumptions were made to this estimate to account for the differences

in required shield weight and surface area for the two vehicles.

Unit Average Shop Cost

422°K (300°F) backface

589°K(600°F) backface

Material Labor Total

(incl. special equip.)

$16,000 $184,500 $200,500

7,878 90,000 97,878

Based on two separate rough-order-of-magnitude estimates of cost for the complete

fabrication, application, and refurbishment of the M2-F2 vehicle, not including quality

control costs, a 409Kg (900 lb) ESM heat shield would cost between $65,000 and

$100,000, and a 1040Kg (2,285 lb) heat shield would cost between $140,000 and

$200,000.

As a basis of comparison, it is estimated that the MPN shield for a 422°K (300°F)

backface condition may be three times the ESM cost and for the 589°K (600°F) case,

five times the ESM cost. This added cost results from both the fabrication, which

would require extensive molds and tooling, and the cost of application and refurbish-

ment, since this material is not as applicable to refurbishment techniques. The
estimate on MPN assumes that it can be made in large sections - a capability that has

not yet been demonstrated.
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4.5 ERROR ANALYSIS

The study made to obtain the heat protection system weights was based on certain

conditions as outlined previously. It is of interest to consider the effect on the shield

weights previously presented of various possible variations in the conditions and

analysis used throughout the study. The error analysis included the effects of transi-

tion criteria, aerodynamic coefficients, pressure distribution, trajectory perturbations,

heating evaluation, safety factors, material properties and performance, attachment

methods, weight, and length variations.

4.5.1 Transition Criteria

The transition criteria used for this study were based primarily on the results of

flight and ground test: (Section 4.2.2.2). The critical Reynolds number was considered

a function of the local Mach number. The available data indicates that an error in

Reynolds number of a factor of two will adequately cover the spread in data for these

flight vehicles (Figure 16). The maximum Reynolds number will thus reach twice the

nominal while the lowest Reynolds number may reach one-half the nominal. This

variation in transition Reynolds number will affect the local heating, total heating,

and therefore the heat protection system weights. The Reynolds number criteria for

this application has little effect on the location of the various heat protection systems

since transition occurs so late in flight that the turbulent heat flux is lower than the

maximum laminar heat flux occuring during earlier flight. The total heating change,

however, will affect the system weight. The effect of this transition Reynolds number

on the shield weight for a typical nominal vehicle is shown on Figure 103 for each of

the three basic re-entry trajectories. The influence of the ablation material and the

backface temperature is also shown. The shield weight will increase to a maximum of

about one to seven percent for the minimum transition Reynolds number. In general,

the ESM shield and the lower backface temperature requirement both show the least

weight change by the change in transition criteria. The higher Reynolds number criteria

will decrease the shield weight by about one-half to two percent, depending on the

conditions shown in Figure 103.

4.5.2 AERODYNAMIC COEFFICIENTS

The high, nominal, and low values of trimmed lift and drag coefficient versus pitch

angle of attack for Mach numbers above five in continuum flow are presented in

Reference 2. The predictions for lift have a lesser tolerance than those for drag,

being less influenced by viscosity effects that vary along the entry flight path.

The surface pressure distributions were obtained from Newtonian computations that

were compared to and then adjusted to the test levels of the M2-F1 data presented in
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Reference2.2*. The accuracy of the lower surface distributions was initially estimated
at five percent for the most windward meridian, then varying to 10percent for the
side meridian.

The data of Reference 2.3 were closely examinedto determine whether a single pressure
distribution could adequately represent the relatively large Mach number range of
5_<M< 10, and the consequenterror introduced by that assumption. The analysis of
Reference2 showedthat the initial accuracy assessment was valid and not overly
conservative.

Since the F2 canopy is further forward and of different shape, and since no pressure
data was available for the F2 configuration, the supplementary data of References 2.3
through 2.5 was employed to define the top centerline distribution as well as the
variations betweentop centerline and side meridian. The F1 data andthe supplemen-
tary data revealed that the presence of the canopyinfluenced the flow both aheadof
and behind the canopy. A possible error of 20 percent was charged to the leeward
data presented in Reference2 as a result of these considerations. The possible
overall averaged error for all of the meridians examinedwas well within the initial
estimations.

The basic influence of variations in the aerodynamic coefficients will be in altering
the vehicle flight path. The flight path variation will thereby affect the heating and
therefore the heat shield weight. The aerodynamic lift and drag coefficients can vary
from nominal values as discussed in Section4.2.1.1. The individual values of CD
and CL can be varied in four combinations: 1)high and low, 2) low and high, 3} low
and low, and 4) high and high. The effect of these combinations on the heat shield
weight is shownon Figure 104for both ESMand MPN for the two pertinent backface
temperatures. In general, the ESMmaterial and the lower backfacetemperature
showthe lowest change in heat shield weights as a result of errors in aerodynamic
coefficients. Combinations (1) and (4} produce lower shield weights while (2) and (3)
result in higher shield weights. The influence of these aerodynamic variations will
result in changes in shield weight of +9 percent, dependingon the conditions. The
re-entry condition selected for this comparison is that for a speedof 7,468 m/sec
(24,500 ft/sec}, which is more sensitive to performance errors causedby the wide
variation in angle of attack during flight, andthus has more effect uponshield weight.

4.5.3 PRESSUREDISTRIBUTION

The maximum error in pressure distribution (Reference 2) varies from 5 to 20percent,
dependingon the location on the vehicle. It is estimated that a variation of about

* References 2.2, 2.3, etc. - denotes References2, 3, etc, cited in Reference 2 of
this report.
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+ 5 percent on thewindward side, + 10percent on the side meridian, and + 20 percent
on the lee side (aft portion) may occur. The change in local pressure will effect the
local heating andthe resulting heat shield weight. The shield weight will vary with
pressure, as shownon Figure 105, for the various materials and backface temperatures
for a typical re-entry flight of 9144m/sec (30,000 ft/sec). Again the ESM material
and the lower backfacetemperature condition showthe smallest change in system
weight by these errors. The maximum variation in system weights resulting from
these pressure errors is about + 3 percent.

4.5.4 TRAJECTORYPERTURBATIONS

The influence of the flight path on the local heating and, therefore, the heat shield
weight, is obvious. The influence of the aerodynamic coefficients on the flight path
was included in the previous discussion (Section4.5.2). The trajectory may also be
affected by atmospheric variations and the mode of entry. The atmospheric variation
was established for standard cold day and a standard hot day and compared to the
normal standard day atmosphere. It was clear, when comparing the performance
under these two extreme conditions for entry at 7468m/sec (24,500 ft/sec), that there
was very little effect on total heating. The total heating for a standard cold day was
about 0.2 percent less and for the standard hot day it was about 0.1 percent greater
than the nominal total heating. The effect of these atmospheres on the total heat
shield weight is, therefore, negligible.

Trajectories were investigated briefly for an undershoot boundary flight, instead of
the overshoot boundaryused for the nominal trajectories for both 9144and 10,363
m/sec (30,000 and34,000 ft/sec). Flights were madewith a limit of about five
normal g's maximum during flight (Section4. I. 1.2). The mode of flight was similar
to the nominal three-phase flights. The undershoot boundary flight has the character-
istics of shorter flight time, lower total heating, and higher maximum heat flux
operation. The total heating for the undershoot boundary is about 47 percent and
38 percent of the nominal heating, for highest and lowest super-circular re-entry
velocity, respectively. The corresponding local heat flux will increase by a factor
of about 2.3 and 3.2 for these two flights. It is clear that the increase in local heat
flux will influence the application of the re-radiation heat protection system, since
it is temperature (or heat flux) limited. The ablation systems designed for the nominal
trajectories will be adequatefor this undershoot boundary condition. It should be
noted that if the M2-F2 vehicle was designedfor this newtrajectory, an ablation
system would require less total shield weight than the nominal shield. The high
heatingareas suchas the nose, flaps, canopy, and fin leading edgewould undoubtedly
use a composite ablation-type system comprised of an outer densematerial to
minimize erosion and the present low density inner material for insulation. The ESM
material is well-suited to this combined system. The MPN could also be made in the
samemanner, if desired.
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The undershoot boundary flight will definitely influence the applicability of the re-
radiation system as shownbelow:

Re-Entry Application

Undershoot Boundary

(X/L)

UE Material Bottom Top Canopy L__EE Flaps Fins Rudder

m/sec (ft/sec)

9144 (30,000) Rene_ 41 X 0.17 X X X X X

10363 (34,000) Ren_ 41 X 0.20 X X X X X

9144 (30,000) TZM 0.90 0.04 All X X All All

10363 (34,000) TZM 0.95 0.05 All X X All All

The re-radiation heat protection system, if designed initially for the overshoot

boundary and critical abort, will not meet the requiyements for the undershoot condition.

An ablation system, however, can meet both conditions. It may be possible to make

the re-radiation system adaptable to both conditions if an ablation layer is added over

the re-radiation surface to accept the extra heating load imposed. This, however,

will increase the local weight of the system and therefore the total heat shield weight.

4.5.5 HEATING EVAI,UATION

The effect of heating on the total shield weight is quite clear. The shield weight re-

quirement was evaluated for a variation of + 10 percent in heating over the vehicle.

This variation is considered well within the scatter of data obtained from a number of

flight tests where the local conditions were well-established such as in the stagnation

area using the methods of analysis described in Section 4.2.2.2. The Ablation shield

weight comparison is shown on Figure 106 for the nominal re-entry trajectory speed

of 9144 m/sec (30,000 ft/sec) and the nominal vehicle weight of 4536Kg (10,000 lb).

The shield weight can vary by about + 3 to - 5 percent of the nominal values. The

largest change is shown for the MPN material at the higher backface temperature

requirement. The effect on shield weight using ESM and the lower backface temp-

erature requirement is considerably smaller. The effect of heating on the re-

radiation system will essentially alter the position of application, i.e., an increase

in local heating will require the limiting surface to move downstream to areas of

lower heating. A decrease in heating would likewise allow the application of each
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system forward to a higher heating region. It is clear that if the heating is increased,

the re-radiation system is less desirable, since it may require locally higher temper-

atures than allowable, and thereby possibly cause a failure. A similar increase in

heat flux for the ablation system would not be of great concern as long as this increase

is not a continuous increase of sufficient magnitude to use more total material than

available, including the allowed safety factor.

There are a number of areas on the vehicle for which heating evaluations are more

prone to error than others; namely, the fin leading edges, flaps, and canopy. The

local heating for these items (shown on Figure 30) are based on evaluations made using

the best available data and from the local pressure estimates in these areas. It is

noted that heating evaluation errors for these local areas will not have a significant

effect on the total shield weight because of the relatively low weights of these particu-

lar items. The fin leading edge for the nominal 4534-Kg (10,000-1b) vehicle, for the

re-entry velocity of 9144 m/sec (30,000 ft/sec), weighs between one and two percent

of the total shield weight, depending on material and backface temperature. The flaps

are somewhat heavier, but only amount to about four to six percent of the total weight

for the same reference conditions. The portion of the canopy of major interest is the

high heating area on the front face. Still, the weight of this section amounts to less

than one percent of the total shield weight. An increase in the local heating in these

o-_ will h .... a "_ala'H'_,a1"_rsmall _.t ,h_ o_ls igh _^_.............. j ...... on .... total we t. _.._ example, if the

local heating was found to be increased by 30 percent, the total shield weight would be

affected by about 0.6 and 1.8 percent as a maximum for the fin leading edge and flap,

respectively. The effect of this heating variation on the canopy would be even smaller.

A reduction in heat flux would produce a similar reduction in the shield weight.

The application of the re-radiation system was based on a maximum surface tempera-

ture of 1255°K (1800°F) for Ren_ 41 and 1755°K (2700°F) for TZM. The employment

of this heat protection system (Table 4) will depend not only on the surface temperature

but upon the surface emissivity which influences the maximum allowable heat flux. A

change in the value of emissivity from 0.80 to 0.65 (Table 1) would reduce the maximum

allowable heat flux by about 18.8 percent. A comparison of the effect of this change

in emmisivity on the most critical location of the re-radiation system is given as follows :
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Critical Position of Re-radiation System

X/L

Bottom Top Canopy LE Flaps Fins Rudder

Rene _ 41 X 0.13 X X X X X

TZM 0.75 0.03 X X X All All

c =0.65

RenJ 41 X 0.16 X X X X X

TZM 0.79 0.04 X X X All All

Note: (1) Values in the table represent the position on the vehicle in terms of X/L.

(2) X designates not applicable for given material.

The location of the re-radiation system will change to a position somewhat further aft

on the vehicle when the surface emissivity is lowered. The effect of this change of

location on the total weight would be negligible. It is noted that the re-radiation weights

were based on the most severe condition for an emissivity of 0.80. The effect of using
TZM or Rene _41 on parts of the forward portion of the leeward surface depends on the

specific abort or re-entry condition.

The effect on weight between the least severe and most severe condition is less than

0.3 percent of the shield weight, hence quite negligible. The weights given, therefore,

are applicable to all booster conditions.

4.5.6 SAFETY FACTORS

The heat protection system weights were based on using a safety factor of 1.2. This

safety factor has been used throughout the study to make the heat shield weights more

realistic. A safety factor of 1.2 has been used on current re-entry vehicle systems

employing various types of heat protection materials for a variety of different applica-

tions. The safety factor provides excess margin to account for unexpected variations

in both the thermal environment and in the performance of ablation materials due to

variations in the material properties. The safety factor is used on the degraded mate-

rial and not on the insulation requirement.

The effect of safety factor on total shield weight is shown on Figure 107 for the nominal

vehicle for re-entry velocity of 9144 m/sec (30,000 ft/sec). The shield weight, of

course, will increase with an increase in safety factor. The maximum increase will

be equal to the increase in safety factor but, in general, is considerably less as shown
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in Figure 107. For example, a changefrom 1.2 to 1.5 in safety factor will increase
the shield weight from about 10to 23percent, dependingon the material and backface
temperature. Similiarily, a reduction in weight will occur when the safety factor is
decreased.

4.5.7 MATERIAL PROPERTIESAND PERFORMANCE

Of fundamental importance to the adequacyof the REKAP models used as the basis of
the analysis in this program are the physical properties which are determined by labo-
ratory experiment. The most important of these, from the viewpoint of heat shield
performance andweight, are thermal conductivity, injected species specific heatand
molecular weight, and decomposition kinetics.

At temperatures much above 589°K (600°F), the determination of these properties
becomessignificantly complicated by the ablative material changeof phaseand decom-
position, thus makingaccurate property measurements difficult to obtain. Thermal
conductivity values obtained by steady-state techniques differ by factors of 2 to 4 from
transiently obtainedvalues. This large transient vs. steady-state discrepancy was
studied in the early portion of the program and resulted in the selection of transient

ity ..1 .... _ _ o_1_ fconductiv .................... per ormance -_,,o_o

The property values used for the simulation of the ESM shield are reasonably well-

defined, and the REKAP model has been verified with numerous ground tests. The

MPN properties are not nearly as well-verified, nor have tolerances on properties

been established. It will be assumed that tolerances for MPN would be reasonably in
accord with other materials such as PN.

4.5.7.1 Effects of Uncertainties in Thermal Conductivity

The change in shield weight for a factor of two increase in char reference thermal

conductivity varies from a 7 percent increase for the hyperbolic entry mission to a

maximum of 12 percent for the equilibrium glide mission (Reference 47). The standard

deviation tolerances usually assigned to char measurements (steady-state and transient)

of approximately + 25 percent result in a two to three percent increase in thermal

shield weight. Interestingly, a similar variation in both undecomposed, virgin material

and char conductivity produces a much more significant increase in shield weight. It

would appear that reasonable observed uncertainties in virgin, undecomposed plastic

thermal conductivity give weight changes comparable to those for the observed uncer-

tainties in char thermal conductivity. It should be emphasized, however, that 10 to 15

percent increases in thermal shield weight, resulting from the differences between

steady-state and transient thermal conductivity, can produce a significant increase for

an optimized thermal shield design.
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The tolerance on conductivity for ESMranges from ± 10percent at low temperatures
to + 20 percent at higher temperatures. This results in less than a 5 percent varia-
tion in shield weight, as shownon Figure 108A. A similar 5 percent variation in
weight would occur for the assumed MPNtolerance of + 30 percent, as shownon Fig-
ure 108B.

The marked attenuation of the effect of large variations in char properties on thermal
shield weight is primarily a result of the self-regulatory mechanisms of energy absorp-
tion from the boundary layer gas-char interface to the zonein the decomposition region
where significant gas generation occurs. Small temperature increases in the decom-
position region will result in a much increased gas evolution rate becauseof the expo-
nential form of the decomposition phenomena. The decomposition region, then, can
be visualized as a nearly constant temperature region for a given external energy flux.
The temperature of this region represents a "pseudo" boundary condition for interior,
or virgin, material heat conduction. Consequently, the char layer processes are un-
coupled, to a significant extent, from the heat conduction process in the uncharred
plastic. Also, the high conductivity of the char permits a considerable portion of the
sensible heat stored in the char to be conductedback towards the boundary layer-char
interface during the cool-down, or "soak" portion of the entry phase. It is then lost
convectively to the lower temperature airstream.

4.5.7.2 Decomposition Kinetics

Thermogravimetric analysis data is used to describe the kinetics of decomposition of

charring plastics. The TGA data is normally obtained over a wide range of heating

rates, but the typical heating rates obtainable in the laboratory are comparable to glide

entry rate, therefore the errors in this area should be very small and contribute only

a negligible error to the total system.

4.5.7.3 Heat Capacity and Molecular Weight of Injected Products of Pyrolysis

The energy absorption resulting from gas product enthalpy, 5 Hg, was considered to
be a second-order energy absorption mechanism for the entry considered (based on

REKAP analysis); however, mass transfer accounted for blocking approximately 20 to

50 percent of the incident energy flux. Mass transfer effectiveness is dependent upon

injected species molecular weight (specific heat). The effect on shield weight of uncer-

tainties in molecular weight is shown on Figure 108C, which depicts a variation in

molecular weight ratio to a factor of 2.5. A reasonable range of ratios would be from

1.5 to less than one. The former would result in a shield weight error of two or three

percent, the latter would mean the shield is conservative by some percentage. The

heat capacity (gas specific heat) variations seem to have very little effect on shield

performance for a wide range of tolerances.
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The importance of transition on the blocking effectiveness of these pyrolysis gases was
studied to determine if errors in this area would have appreciable effects on the system
design. Turbulent heating has resulted in a maximum increase of 10to 20 percent in
total heating. At the time transition occurs, approximately 20 percent of the convective
heat is blocked. There doesnot seem to be any large variation in this figure between
laminar and turbulent blocking. Therefore, any discrepancy resulting from the use of
a laminar rather than turbulent blocking term shouldbe small, and in view of the fact
that only a maximum of 20percent of the total heating is being discussed, the overall
effect on the system shouldbe negligible. In addition, it shouldbe noted that the great-
est part of the erosion and degradation processes has been completed prior to the
occurance of transition. Therefore, small changesin heating from this point on will
not appreciably changeshield performance.

The main emphasisof this work has beenconduction and gas properties; other material
properties (e.g., material specific heat) were not treated becauseof the general ac-
ceptanceof the values used or the insignificance of their effect on overall shield per-
formance. It shouldbenoted that the tolerances discussed for each material charac-
teristic would, in general, be root sum squared together rather than summed, to give
a total variation. This would give a total tolerance of not substantially higher than the
greatest variation.

4.5.8 HIGH EROSIONEFFECTS ONSHIELD PERFORMANCE

The effect of a high erosion condition onheat shield performance was studied, with
particular emphasis on the resultant backface temperatures. Results from the study
indicate that substrate performance is not substantially effected by a high erosion con-
dition.

An analysis was madeof the effects of instantaneouschar removal, on MPN substratc
performance in areas where no erosion is expected(environmental conditions for a
9144m/s (30,000 fps) trajectory, low heating point). The results are illustrated on
Figure 109. They showthat the char removal does not have a substantial effect on the
shield performance. There is some rise in backface temperature, but safety margins
would more than compensatefor the latter if such erosion were to occur.

The most evident result in the high erosion case is surface removal during the flight;
this hasa two-fold effect. First, it exposeslower shield layers to higher heating
earlier in the trajectory. Second, it removes from the system the heat that was stored
in the char (whichwas removed), and therefore it (the heat in the char) cannot contri-
bute to substrate heating during soak-out.

The study indicates, in the low heating areas (areas where no or minimal erosion is
predicted - a major part of the vehicle) with long soak-out periods, the removal of
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char causedby shear, oxidation, or anyother mechanism, would not substantially
effect shield performance.

An analysis was made to determine if a composite ESM on honeycombfilled with
microquartz system would provide weight benefits over an all-ESM shield for the
M2-F2 lifting vehicle. This is a result of material performance studies in which it
became evident, for the environments studied, that approximately 1.81 cm (0.75 in. )
of ESMwas undegradedand essentially served only as insulation. This amount of
ESMwas replaced with a 0.254 mm (.010 in. ) sheet of fiberglass on top of various
thicknesses of honeycombfilled with micro-quartz. It was found that 2.54 to 3.81 cm
(1-1.5 in.) of honeycombwill provide the same insulation as the ESMwith a weight
saving of approximately 2.44 Kg/m 2 (0.5 lb/ft2).

The honeycombwithout a micro-quartz filler (air-filled) has essentially the same ther-
mal properties (specific heat, conductivity) as the system with micro-quartz. There-

fore, if various schemes were used to reduce the radiation in the honeycomb, or if

only a minimum amount of microquartz was used as a radiation inhibitor, additional

weight savings might be possible.

4.5.9 WEIGHT AND LENGTH VARIATIONS

The shield weight required was presented for the nominal conditions of weight and

length. Variations of both weight and length off the nominal conditions will also affect

the shield weight. The shield weight and length were varied from the nominal conditions

for each of the re-entry trajectories for both ablation materials and backface tempera-

tures. The effect of total vehicle weight on the shield weight is shown on Figure 110

for each of the pertinent conditions. It is clear that there is only a minor influence on

the shield weight by total weight changes of + 10 percent. A 10 percent total weight

reduction reduces the shield weight by from about 1 to 4 percent, while a 10 percent

increase in total weight increases the shield weight by about 1 to 5 percent, depending

on the trajectory material and backface temperature. The weight change essentially

changes the vehicle W/CL A, which effects the local heating and therefore the shield

weight requirements. A variation in vehicle length has a much greater effect on the

shield weight as shown on Figure 111. A reduction of 10 percent in length will reduce

the shield weight by about 10 to 18 percent, while a 10 percent increase in length will

increase the shield weight by about 12 to 18 percent, depending on the trajectory,

material, and backface temperature. The length variation for a given vehicle total

weight effects both the W/CLA and the vehicle surface area, both of which influence

the shield weight.

81



4.5.10 ATTACHMENT METHODS

Figure 76 showsthe percent of the total ablation system weights that are contributed
by both the ablation material and the refurbishment technique. As can be seen, the
refurbishment system contributes a small amount of the total weight; therefore, large
errors in refurbishment weights will result in negligible errors in the overall weight
of the heat protection system.

Figure 76also showsthe percent refurbishment for the combined vehicle of ablation
plus Rene'41and TZM re-radiation plus ESMover TZM re-radiation. It has been
stated previously that the refurbishment weight for the re-radiation panels with or
without the overlay of ablation will be the same, so that the examplewill be sufficient
to show the percentageof refurbishment for all casesof re-radiative panels. There-
fore, the percentage error in total heat protection weight will be negligible due to
large errors in the weight of refurbishment for the refurbishment schemesused in
the study.

4.5.11 YAW EFFECTS

The influence of yaw was investigated on the heat protection system weights. It was
assumedthat the vehicle wouldbe subject to yaw oscillations of + 5° during the nominal
flight. Operation at an angle of yaw will influence the local heat flux primarily on the
side of the vehicle. The heating on the windward andleeward rays will essentially re-
main unchanged,as will the total heating at anypoint on the vehicle. The ablation sys-
tem, therefore, will not be affected. However, yaw will limit the re-radiation appli-
cation if the system is utilized to its full capability along the heat flux isoclines (Figure
29) which are essentially in anaxial direction. From a practical standpoint, the re-
radiation-system was limited in application to a position on the side of the vehicle dic-
tated by the material's maximum capability on the windward ray (Table 4). Thus, yaw
will have little practical influence on either the shield weights or the heat protection
application specified in this study.
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4.6 FUTURE WORK RECOMMENDATIONS

During the performance of the study it became obvious that additional work was required

in specific areas to improve performance predictions necessary in the design of future
lifting vehicles, such as the M2-F2.

4.6.1 TRAJECTORY ANALYSIS

Three major areas of trajectory analysis merit further investigation:

(1) Abort escape from the booster blast propagation.

(2) Footprints for the various re-entry maneuvers.

(3) Terminal landing maneuvers for safe touchdown.

The abort system requires the capability of escaping the shock wave and fireball that

could result from a catastrophic booster malfunction at any point on the ascent trajectory.

The blast propagation, residual fuel energy, and abort system performance should be

investigated as a function of altitude.

The footprints for the various re-entry flight modes, ranges of weight, and WCL A should
be investigated to determine landing site selection capability.

The achievement of a tolerable sink rate at touchdown is a fairly difficult problem for a

relatively low-lift vehicle such as the M2-F2. A study should be made of the optimum

landing maneuver with consideration given to the influence of vehicle design parameters

such as L/D, C L max, and W/CLA. Consideration should also be given to uncertainties

(such as altitude measurement) and their effect on landing safety.

4.6.2 AERODYNAMICS

The major difficulty in providing adequate aerodynamic information for the use of other

disciplinary effort during this study was the lack of data on the specific M2-F2 vehicle

configuration. The desired data can only be provided by extensively testing pressure

models of the F2 configuration at flight representative conditions. These tests should

include mass addition simulation, Schlieren photographic coverage, and a finer mesh of

pressure taps to the canopy, upper surface, fin-body intersection, inboard and outboard

fin surface, boattail, and control surface areas of the tunnel models. Additional testing

of F2 force models is desirable, but is not as critically needed for heat shield design

as the pressure information.

The possibility of generating heat shield data from flying test bed experiments for the

M2-F2 vehicle should be investigated. Such data could markedly improve predictive

accuracy on heat shield design and permit a lighter, more reliable configuration.

Test-bed experiments to determine heat shield material capability have already been
flown on the X-15 aircraft.
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Test-bed vehicles designedprimarily for material testing have been used successfully
by GE-RSDfor several years. The latest such GE-RSDproposal has the acronym
SLAMAST, for Scout _I__unched Advanced M__aterials And S_tructures Test-bed. It should

be possible to either test full-scale M2-F2 panels on such a lifting re-entry vehicle or,

alternatively, fly a sub-scale M2-F2 model with the SLAMAST internal subsystems.

Another area that will require future attention is that of possible windshield distortion,

pitting, or fogging caused by deposits from products of ablation. The pilot must have

a windshield as free as possible from such deposits so that he may clearly and reliably

see terrain and runway in the process of a routine safe landing. Investigation of ablation

products and their deposition may point to simple aerodynamic fixes that will ensure

clear canopies for safe piloted landings.

In addition to the mandatory pressure tests and the desirable force tests, updating and

upgrading the current pressure predictions should be continued by application of three

-dimensional flow field theory, as well as comparison with configurations whose flow

fields exhibit local similarities. As the results of new experimental work become

available, the pressure predictions should be modified to include the effects of mass

addition from the ablative process, the local effects of gaps, steps, and joints, and

the changes dictated by more adequate definition of control surface and stabilizing

surface pressures. The subsystem (environmental control system, structural loads,

etc) requirements on vent locations and sizes may require detailed local assessments

of pressure levels.

The recommended future aerodynamic work for the M2-F2 heat shield design is as
follows :

(1! Test the IYI2-F2 model at a Mach number of ten or greater, the model having

closely spaced pressure taps in the following areas:

(a) Upper surface in the nose cap/canopy, canopy/body flat, fin/body, and
control surface/boattail intersection areas.

(b) Fin inboard and outboard surfaces from the leading edge back one-third

the local chord and at several spanwise locations.

(c) Control surface edges and near-edge locations.

The model should have moderately spaced pressure taps in those flat upper surface

areas and lower surface boattail areas not covered by the closely spaced taps, and

widely spaced taps over the lower nose cap and conically wrapped surface areas.

(2) Mass-addition effects should be simulated on a M2-F2 model either separately

or in combination with the tests envisioned in (1). Schlieren or shadowgraph

photographic records should be considered a necessary part of the test data.

84

/
/

/



(3)

(4)

(5)

(6)

(7)

Continue force tests of the M2-F2 shape to better define the aerodynamic

force and moment characteristics throughout the expected flight ranges
of Mach number and altitude.

Employ available analytical tools, such as three-dimensional flow field theory,

for analyses of the M2-F2 configuration to better define vehicle characteristics,

particularly where test data is either unobtainable or inconclusive.

Consider body-fin and other interaction zone testing through use of the Malta,

or other comparable, facility.

Initiate a feasibility study of test-bed design and experimentation directed

toward higher confidence levels in heat shield design for selected materials.

Consider an aerodynamic investigation into the problems of ablation product

contamination of windshield, vent, control gap, and other critical surface
areas.

4.6.3 HEATING EVALUATION

The thermal protection requirements are largely a function of the heating. Therefore,

it is highly recommended that additional work be done to obtain a better definition of the

thermal environment over the vehicle for the conditions of prime interest. Detailed

thermal distributions, such as obtained by thermal sensitive paint techniques, should

be obtained for a variety of angle-of-attack and yaw conditions. Test conditions should

include angles of attack of 0 to 40 degrees and yaw angles of 5 and 10 degrees.

Both laminar and turbulent flow conditions are required to obtain the desired heat flux

distributions. Special emphasis should be placed on the heat flux contours and the high

heating interaction areas over the vehicle.

In order to obtain a better definition of the heating on the leeward surface, fins, flaps,

canopy, and interaction areas, quantitative tunnel tests with sufficient instrumentation

should be run at various Mach number and Reynolds number conditions. Photographs

should be made to establish the flow field definition, with such tests covering a range

of angle-of-attack and yaw conditions that would include both laminar and turbulent

flow conditions for the M2-F2 configuration, with and without a canopy.

Considerable effort is being expended on transition from laminar to turbulent flow,

including the Re-entry F flight experiment sponsored by NASA Langley Research

Center. The problem is complex, due to the large number of variables (wall cooling,

roughness, mass addition, angle of attack, etc.) that appear to be important. This

work should continue and is directly applicable to lifting vehicle application.
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4.6.4 HEAT PROTECTIONSYSTEM

The heat shield weights evaluatedfor the various heat protection systems, re-entry
conditions, andvehicles were based on the best estimated performance properties of
the systems involved. The ablation systems are dependenton the ablation material
performance. Theperformance of ESM is fairly well established, but there is a
lack of information avaiable for MPN. A number of performance tests shouldbe
madeon MPN at various facilities to obtain actual performance data by instrumented
models for a variety of heating rates, enthalpy levels, and shear levels for various
conditions of total time. The MPN requires gaps for expansionover the vehicle
surface° The performance of the MPN in the gap region must also be evaluated.

Areas, pertaining to re-radiation systems, requiring further analysis are maximum
surface temperature sensitivity, coatings, and the effect of discontinuities. Additionally,
the use of microquartz (DynaQuartz) at high temperature conditions, active cooling
system relaibility, and proper use of air gaps and construction techniques, are all
items that must be further studied for design optimization. In this regard, the latter
could concern such items as air gaps near the re-radiation material (rather than next
to the backface), several air gaps in series, filling air gapswith extremely lightweight
materials to inhibit substructure radiation, anddouble wall construction.

The ablation over re-radiation sytem is quite attractive for the low backface temperature
shield. This system relies on the ablation material to provide the necessary protection
until the re-radiation material can be used. The actual performance of the various
ablation materials and the bondsto this application are of prime importance. A number
of performance tests must be made to determine the adequacyand the design require-
ments for the system. Special emphasis shouldbe placed on the thin coatings of
ablation material over the re-radiating surface. The performance of the ablating
material and the effect on the re-radiating surface, especially the TZM coating, must
be evaluated.

The methods used in joining adjacent heat protection systems, is an area needing
intensive investigation. Passive-type joints betweentwo dissimilar systems should
be tested to determine the adequacyand requirements for a realistic design. Joint
configurations that adapt to the surface contour (active joints) may be required. The
gaps required at hinges and betweenadjacent hot structures must also be tested to
evaluate their adequacy.

The use of a composite type of ablation system consisting of a variety of ablation ma-
terials in depthwas discussed in section 4.3.2.1.1.3. ESM is ideally suited to com-
posite application (gradedproperties in depth). A number of such ESM Composites
havebeentested. A composite of PN and MPN could also be produced but with much
greater difficulty. Compositeswith different base materials may offer special advan-
tages, but a suitable bondmust be developedfor these composite systems. Analytical
andexperimental studies shouldbe made to further explore composite heat protection
systems characteristics.
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4.6". 5 MATERIALS

4.6.5.1 Metallic Materials

One heat protection system concept that should be investigated is the combined ablator

over re-radiative panels in which the ablator would provide protection during early re-

entry (high heat flux) while the re-radiative elements functioned during the longer,

low-heat-flax portion of the flight. Optimization of such a system is dependent on a

number of design-limiting factors such as the requirements of complete removal of

the spent ablator and spread of temperatures of ablator bond and re-radiative panel

operating temperatures. The system in its simplest form would consist of a layer of

ESM 1004 bonded to the structure on re-radiative panels with RTV 560. Local ablator

thickness would be a function of heat load, and re-entry heating would result in re-

moval of spent ablator at a certain point in the trajectory. Since ablation may be non-

uniform over portions of the vehicle, this system would be limited to those applications

where surface irregularities resulting from incomplete removal of the ablator would

not adversely affect boundary flow conditions.

Positive control of ablator removal could be achieved by several methods. One simple

mechanical means would require the introduction of a thin layer of a high-modulus

metal such as beryllium between the ablator bond and the structure skin. An explosive

device could be actuated to open the heat protection composite into a petal configuration

at the forward portion of the vehicle. The whole components would then be cleanly

stripped from the vehicle exposing the re-radiative surface.

Another concept has been tried in the laboratory. Magnesium foil was bonded to a

thin 0.788 mm (0.031 in.) strip of 6061 aluminum using RTV 560. ESM 1004 was

bonded to the 0. 153 mm (0. 006 in.) magnesium foil with RTV 560. One edge of the

ablator and attached magnesium foil was peeled from the aluminum and loaded with a

small weight to permit access of air heated by an oxy-acetylene torch. The magnesium

foil ignited and burned, completely destroying the bond holding the ablator to the alu-

minum strip. Heat of combustion of the foil was so small that the aluminum was un-

damaged. The reaction could be initiated by an explosive ring device located immedi-

ately behind the nose cap. This would push the leading edge of the ablator composite

into the slip stream. The high temperature capability of either Rene 41 or TZM would

make this concept completely feasible, in view of the experience with aluminum.

Further investigation of these and other concepts are required before this system can
be used.

Another field for development is in the realm of extended capability adhesives or the

use of metallic deposits deposited on the re-radiative panels or vehicle structure. The

metals could be selected on the basis of melting temperatures, and the flame-sprayed

metallic substrate for the ablator bond would be removed without leaving any residue

when the melting point of the metal was reached.

87



4.6.5.2 Plastic Materials

The following additional work is recommended on the candidate ablative and attachment

material systems, assuming that sufficient potential has been shown for each one from

the analytical study. The rationale for this effort was included in the discussion of

each of the material systems.

(1) MPN

(a) Definition of the fabrication technique for producing full-scale
vehicle sections.

(b) Generation of design data for analysis on representative samples.

(c) Cost estimate based on the defined fabrication process.

(d) Develop bonds for high temperature application.

(2) ESM

(a) Selection of optimized ESM formulation to specific body station

requirements.

(b) Define production application of spray ESM.

(c) Evaluate performance at nose and leading edge areas. Select other

candidate materials for these areas and compare performance.

(d) Develop bonds for high temperature application.

(3) Refurbishment Attachment Systems

(a) Define production fabrication technique for:

- Elastomeric-pillars and Nut-and-Bolt with MPN.

- Loop-and-pile with ESM.

(b) Generate thermo-mechanical design data for each of the selected

attachment systems for the applicable shield material.

(c) Conduct trade-off analysis and select best attachment system(s)
for each shield material.

(4) Special Application Areas

(a) Select, define, and generate thermo-mechanical data on sealant

material for joints and gaps with MPN.

(b) Define most promising technique for access panel attachment for
each shield material.88
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(c) Develop and define technique for thermal protection of control surface

gaps for each shield material.

(5) Jointure of Ablative and Re-radiative Thermal Protection Systems

(a) Define fabrication technique for each of the proposed methods.

(b) Qualify the techniques in a simulated re-entry thermal environment.

(6) Test Vehicle

After previous studies are completed, select most promising systems,

fabricate and apply to a recoverable instrumented re-entry test vehicle,

conduct flight test, qualify systems, and analyze performance against
analytical and ground test data,

4.6.6 STRUCTURES

As was discussed in Section 4.3.4, the main structural interest in obtaining the opti-

mtun heat protection system is the determination of the optimum backface temperature

that will result in the minimum weight of the sum total of the shield plus the substruc-

ture. As the backface temperature is increased to 644°K (700°F), the weight of the shield

decreases and the weight of the structure increases because of the reduction in mech-

anical properties. To determine the optimum heat protection system, it is recommended

that an integrated study be made including both the shield and the substructure over a

wider range of backface temperatures than used in this study. A range in temperature

from about 366°k (200°F) to 810°k (1000°F) should cover the region desired so that

an optimum may be established. The temperature variation should be investigated,

both uniform value and as a variable over the portions of the vehicle.

4.6.7 SHIELD OPTIMIZATION

The extension of the shield performance analysis beyond the material and environmen-

tal constraints for this study would be useful from a shield optimization standpoint.

The applicability of the M2-F2 configuration to other missions would also be determined.

The most promising area for optimization is the shield-structure trade-off with back-

face temperature, as mentioned in Section 4.6.6. This trade-off would not only estab-

lish the optimum operating backface temperature for minimum weight for a passive

system but also for active cooling schemes. In addition to internal active cooling, the

use of transpiration cooling during specific portions of flight and on local areas of the

vehicle may also show a weight advantage for the system. The transpiration cooling

system could be either active or passive, depending on the local application.
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The data obtainedfrom the model testing suggestedin Section 4.6.3 would aid in the
determination of weight penalties for performing a wide range of missions which differ
from those in this study. The study should include both terrestrial and extra-terres-
trial missions. The latter appear to bea relatively minor problem for a planetary
atmosphere suchas Mars (Reference 49} but would be of interest for Venus, Mercury,
and Saturn. There is interest in using the same shield for use in planetary entry and
then using it againduring earth entry. The REKAP program is compatible with this
multiple use requirement.
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5. CONCLUSIONS

This study was made to evaluate the heat protection system weights for lifting vehicles

having a moderate L/D for a variety of weights and sizes. These vehicles would be

capable of re-entry at a variety of flight entry velocities, after launch from a number

of boosters, and would also be capable of abort. A variety of heat protection systems

were considered consisting of a number of different materials and several backface

temperature s.

The boosters considered included Titan H, Titan III-C, and Saturn I-B. The re-entry

trajectories included one subcircular and two supercircular velocities; namely, 7468,

9144, and 10,363 m/sec (24,500, 30,000, 34,000 ft/sec). The nominal vehicle sizes

varied from 6.71 to 9.14 m (22 to 30 ft) and 3172 to 6804 kg (7000 to 15,000 lb). The

basic lifting body used in the study was the M2-F2 NASA configuration. Heat pro-

tection systems included ablation; ablation plus re-radiation; and ablation, re-radiation,

and ablation over re-radiation. The materials included an elastomeric shield material

(ESM) and microballoon phenolic nylon (MPN) for the ablation material, a super alloy

(Rend 41), and a refractory alloy (TZM) for the re-radiation system, and micro-

quartz and foamed-pyrolytic graphite for insulation of the re-radiation systems. The

heat protection system weights were evaluated for backface temperatures of 422 and

589°K (300 and 600°F).

Trajectories were obtained for the wide variety of vehicle sizes and weights for both

re-entry and abort conditions of interest. The flow fields and pressure distributions

were determined over the entire vehicle at various angles of attack. The heat flux

distribution was determined by reference enthalpy methods for both laminar and tur-

bulent flow, as required. The methods employed in the study have been used extensively

in re-entry vehicle design. Transition criteria for the critical Reynolds number was
determined as a function of local Mach number. Transition occured at the very end

of the flight and was included in the analysis.

Model tests were run at Rhodes and Bloxom to obtain the heat transfer distribution at

30 degrees angle of attack. The heating evaluation clearly showed that the convective

heating during re-entry and abort was most critical. The heat protection system

requirement was established by a Reaction Kinetics Ablation Program (REKAP) analysis

for both ESM and MPN. The REKAP model has been well-established for ESM and was

adapted to MPN. Demonstration of its prediction capability of degradation and erosion

is described in the Appendix.

The heat protection system weights were dependent on both the re-entry and abort

trajectories. The application of the ablation system was essentially based on the

re-entry trajectories that imposed the highest total heating (greatest shield require-

ment), while the re-radiation system application was primarily limited by the critical

abort flights that imposed the highest heat flux. The ablation over re-radiation system
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weight was basedon both re-entry and abort. The minimum ablation thickness for
this system was imposedby the abort, while the higher total heating capability was
determined by re-entry. The heat protection requirements were determined primarily
for the three trajectories used as nominal typical flight paths with three basic phases
(pull-out, constantaltitude, andequilibrium glide}. The nominal supercircular flights
were basedon the overshoot boundary. The subcircular flight was investigated for
several variations; those requiring the heaviest heat shield were used in the study
(constantaltitude phaseto L/D max}. Flights with a constant altitude phaseto CL max
showedappreciably lower total heating and therefore lower shield weight requirement.
Operation at bankangle with CL max will produce a still lighter shield requirement.

The shield weights, basedon a safety factor of 1.2, vary from about 8 to 25 percent

of the total vehicle weight for the conditions examined. The major influence on the

shield weight requirement was the backface temperature. For the low backface

temperature condition of 422°K (300°F), the all-ablation type heat protection system

requires about 17 to 25 percent of the total vehicle weight. Of the two ablation materials

investigated, MPN requires somewhat less weight than for the ESM all-ablation system.

The TZM material, using a maximum allowable temperature of 1755°K (2700°F),

requires a shield of less weight than that for Rene 41 (maximum temperature 1255°K

(1800°F)). The combined ablation, re-radiation, ablation over re-radiation system

requires the lowest weight shield.

The comparison of weights for the higher backface temperature 589°K (600°F} shows

the opposite trend. The high backface temperature reduces the ablation system re-

quirements considerably. The ablation shield is by far the lightest and consists of

about 8 to 17 percent of the total vehicle weight. The heat shield using ESM material

is considerably lighter than that using MPN. The systems using re-radiation and

ablation over re-radiation show higher weights than the ablation system.

The heat shield systems were all refurbishable. The weight penalty associated with

refurbishment varies from about 3 to 12 percent, depending on the material, system,

backface temperature, and application. The refurbishment system for the all-ablation

ESM system can use the perforated scrim approach for all applications and tape for

the lower backface condition. The MPN ablation material requires the elastomeric-

pillar system. The maximum refurbishment system weight requirement for ESM is

about 58 percent of that for MPN and about 66 percent of that for the re-radiation

system using rods and clips. The ease of refurbishment is clearly reflected in the

cost estimate for these typical systems. A typical cost (rough estimate} of the ESM

ablation system for the nominal 4536-kg (10,000-1b} vehicle will be about $85,000 for

the 808-kg (900-1b) shield and $175,000 for the 1070-kg (2285-1b} shield. A comparable

cost of the MPN system is estimated at about $420,000 to $530,000 for the similar

shields.
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The heat protection system study shows thatfor the application intended, the local

heat flux is sufficiently high that ablation must be used for specific portions of the

vehicle (nose, flaps, fin leading edge, canopy, etc). Although re-radiation may be

used for some portions of the vehicle, this system exhibits a high sensitivity to changes

in the flight path. The ablation system has more versatility and shows definite weight

saving for the higher backface temperature condition. The ESM material, besides

being less expensive, has a definite advantage not only in manufacture and refurbish-

ment but is more adaptable to cold-soak and has thermal expansion compatability with

the structure. MPN is generally limited to about 150OK (-190OF) cold-soak and re-

quires local expansion gaps over the vehicle. ESM has no such limitation.

The ablation-type heat protection system selected is considered to be the most re-

liable at the present time. The use of the materials, the manufacture, and repair

are such as to present us with the utmost confidence in this system for the intended

application. The re-radiative system, which can be used for only part of the vehicle,

has the basic limitation of being sensitive to local heat flux which is closely dependent

on the flight path requirements. The coatings required for TZM make the handling and

re-use capability of special concern. The re-radiation heat protection system can use

passive or active cooling. The passive system is more reliable but it requires greater

shield thickness and greater shield weight than the active system. The active (closed

loop) system utilizes pumping equipment, heat exchanger and coolant (ethylene-glycol

water solution) which is cooled in a boiler and the steam generated is discharged over

board. The active cooling system used in conjunction with an air gap is desireable from

a weight standpoint but requires somewhat greater shield thickness. The use of micro-

quartz for insulation, compared to foamed-pyrolytic graphite, shows a weight advantage

of about 5 percent. The ablation over re-radiation system for low backface tempera-

ture applications appears very attractive. The relatively clean removal of the outer

ablation layer and its effect on the coating for T ZM is of some concern for the proper

application of this system. The necessity of an active cooling system with the re-radi-

ation system adds somewhat to its complexity and reduces its reliability.

The error analysis considered for this study indicates that the weight evaluations may

be considered reasonable for the intended application. Individual variations in the

various aspects of the study can be readily evaluated in terms of heat shield weights.

Future work recommendations have been established for this application in each of the

major technical areas.

The study shows the advantage of higher backface temperature design. About 24 percent

of the vehicle weight represents the shield at the low backface temperature of 422°K

(300°F), which can be lowered to about 8 percent when the temperature is raised to

589°K (600°F) for ESM. It is further suggested that in special areas such as the fins,

flaps, and aft section of the vehicle (away from the pilot area}, the local backface

temperature be increased to even higher values through the use of structures such as

beryllium or boron fibers which will further reduce the shield weight.
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7. APPEND_

7.1 SAMPLE ABLATION ANALYSIS (GROUND AND FLIGHT TEST)

Thermodynamic analysis was made of the ground and flight test for the microballoon

phenolic nylon (MPN) for the two following test conditions:

(1) Ground test

heat flux = 141.5 w/cm 2 (125 Btu/ft2-sec)

enthalpy = 23.2 KJ/g (10,000 Btu/Ib)

time -- 60 sec.

(2) Flight test

flight path (Reference 50)

max heat flux = 795 w/cm 2 (700 Btu/ft2-sec)

The analysis utilized the Reaction Kinetics (REKAP) and Ablation Design Computer
programs.

The conduction properties for the virgin material are well established (References 37,

50). The char conductivity based on transient conditions is shown on Figure 112A as a

function of temperature. As shown, the transient conductivity is considerably lower

than the steady-state values but more realistic for utilization in the reaction kinetic

analysis of charring ablation materials (Reference 52). The transient values were

based on recent GE tests for NASA-Langley (Reference 53). The specific heat is

shown on Figure 112B for the material and on Figure 112C from the TGA data as a

function of temperature (Reference 50). The pyrolysis gas properties shown on Fig-

ure l12B as a function of temperature are based on information from phenolic nylon

and are believed applicable to the MPN material. The emittance data is shown on

Figure 112D (Reference 50). The NASA data has been utilized throughout the study for
the MPN material except as specifically noted.

The thermodynamic performance of the ground test sample is illustrated by the degrad-

ation and erosion shown on Figure 113 and the temperature distribution shown on Figure

114 as a function of time. The degradation is shown for the amount of material charred to

a density less than 95 percent virgin density. The degradation calculated was about five

percent higher than tested and the erosion calculated was about 13 percent higher than

tested. It is noted that, since only one test (NASA) was run for this case, the com-

parison cannot necessarily be called representative because of the lack of statistical
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data. In any case, however, the calculated degradation and erosion appears somewhat
conservative. Themaximum surface temperature calculated is about 30 percent lower
than tested. This considerable difference may be due either to a local test facility
characteristic or to measurment difficulties. It has been the general characteristic of
the usual REKAP analysis to slightly overpredict the subsurface and backface tempera-
ture as determined by measurementsusually more reliable than surface temperature.
It is believed that the subsurface and backface temperature calculations are repre-
sentative of actual test conditions.

The flight test heat flux is shownon Figure 115as a function of time. The performance
of the material is also shownon Figure 116as a function of time. The temperature is
shownon Figure 116for various locations beneaththe surface. The degradation and
erosion during flight are shownon Figure 117as a function of time. The calculations
indicate that about i. 66cm (0.66 inches) of material will degrade and about 1.31 cm
(0. 515inches) of material will erode for the flight condition of interest. At thc present
time no flight tests have beenmade for these conditions.
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7.2 GROUND TEST MATERIAL PERFORMANCE

REKAP analyses were conducted in order to calculate phenolic nylon (PN) performance

for three ground test conditions.

The material and local laminar conditions studied were:

Phenolic Nylon 1.2 g/cm 3 (75 lb/ft 3)

(a) Condition I

1. Enthalpy 9.280 KJ/g {4000 Btu/lb)

2. Nose radius 44.5 mm (1.75 in.)
3. Heating rate (cold wall) 908 w/cm 2 (800 Btu/ft2-sec)

4. Pressure 2.62 atm

5. Material thickness 2.54 cm (1.00 in.)

6. Duration of heating 30 sec
7. Heating rate (combust) 284 w/cm 2 (250 Btu/ft2-sec)

(b) Condition II

1. Enthalpy 23.200 KJ/g
2. Nose radius 6.35 cm

3. Heating rate (cold wall) 152 w/cm 2

4. Pressure 0.021 atm

5. Material thickness 1.9 cm

6. Duration of heating 60 sec

7. Heating rate (combust) 102 w/cm 2

(10,000 Btu/lb)

(2.50 in.) _

(134 Btu/ftZ-sec)

(0.75 in.)

(90 Btu/ft2-sec)

(c) Condition III

1. Enthalpy 7. 150 KJ/g
2. Nose radius 9.5 mm

3. Heating rate (cold wall) 184 w/cm 2

4. Pressure 0.045 atm

5. Material thickness 1.52 cm

6. Duration of heating 25 sec

7. Heating rate (combust) 68 w/cm 2

(3080 Btu/lb)

(0.375 in.)

(162 Btu/ft2-sec)

(0.60 in.)

(60 Btu/ft2-sec)

The results of the analysis are depicted in graphical form on Figure 118 through 128.

The data is presented for the conditions listed above, with and without combustive

heating. The values used for the combustive heating are only representative of possible

heating levels and are shown to indicate the effect of this mechanism on material per-

formance.
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The ablation anddegradation histories for each of the aboveconditions are shownon
Figures 118and 119, respectively. They depict an essentially linear increase in de-
gradation and erosion with time which ends at the termination of heating (i.e., no
appreciable degradationappears during soakout). The addition of combustion heating
causes from 0.508 to 1.524 mm (20 to 60mils) of additional degradation. This is about
twice the effect produced for the erosion 0.254 to 0.762 mm (10 to 30 mils). A com-
parison betweenconditions I, II, and III shows the increase in degradation and erosion
due to high heating in condition I and the effect of the high enthalpy (condition II) in
depressing the erosion and degradation rates by increasing the blocking effectiveness
of the pyrolysis gases.

The temperature and density profiles (Figures 120 to 128)are typical of phenolic nylon
test results, showingrelatively narrow reaction zones.

The effects of combustiveheating are most dramatically demonstrated by surface temp-
eratures shownon Figures 126through 128. They illustrate the 278 to 556°K (500to
1000°R) increase in surface temperature due to combustionheating.

It shouldbe noted that the erosion characteristics are basedon the recommended ero-
sion criteria usedfor the program, which was determined from ground and flight test
data. T_ use of differenterosion characteristics i_,_ though _ .... + from the

criteria might fallwell within the substantial scatter of the test data) will profoundly

effectother material performance parameters (e.g., degradation depths).
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TABLE 1. TYPICAL PROPERTIES OF RENE 41 AND TZM

TZM Rend 41

Emittance (A) 0.80 0.80

(B) 0.65 0.65

Tensile Yield Strength x 10 -3

KN/m 2 (lb/in 2) 13.7 (20) 20.7 (30)

Young's Modulus x 10 -6

KN/m 2 (lb/in 2) 10.3 (15) 13.7 (20)

Density g/cm 3 (lb/ft 3) 10 (624) 8.11 (506)

Coefficient of Expansion x 106

OK (OR) 5.4 (3) 16.2 (9)

Elongation (%) 40 25

(A) Pre-oxidized Matte finish

(B) Typical Operational Value

i01
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Refurbishment

TABLE 2. REFURBISHMENT SYSTEM WEIGHTS

Technique

1. Elastomeric Bond

2. Perforated Scrim

3. Nut and Bolt

4. Elastomeric Pillars

5. Hi-Temp. I_op

& Pile

6. Mid-Temp. Loop

& Pile

7. Mystic Tape

No. 7000

*N.A. - Not Applicable

TABLE 3.

Design Baekface

Temp.

OK (OF)

MPN

589 (600) N.A.*

589 (600) N.A.

589 (600) 0.537 (0.011)

589 (600) 1.13 (0.232)

589 (600) N.A.

422 (300) N.A.

422 (300) N.A.

Shield Material

Kg/m 2 (ib/ft2)

ESM

Sheet

0.366 (0.075)

0.488 (O.lOO)

0.537 (0.011)

0.766 (0.157)

Spray

0.000

0. 122 (0.025)

N.A.

N.A.

4.94 (1.012) 4.57 (0.937)

2.83 (0.581) 2.47 (0.506)

0.674 (0. 138) 0.307 (0.063)

MINIMUM ABLATION THICKNESS FOR COMBINED

(ABLATION OVER RE-RADIATION) SYSTEM FOR

102

MAXIMUM CRITICAL ABORT APPLICATION

(Saturn I-B, L/D max)

V E

Condition

m/sec (ft/sec)

Ablation

Material

Required

Thickness*

mm (in.)

10,363 (34,000)

9144 (30,000)

7468 (24,500)

ESM

MPN

ESM

MPN

ESM

MPN

0.356 (0.014)

0.254 (0.010)

2.16 (0.085)

1.53 (o.o6o)

1.91 (0.075)

1.35 (0.053

*TZM Re-Radiation Material



TABLE 4. HEAT PROTECTION SYSTEM APPLICATION - RE- RADIATION

Botto_.____mm_ _ L.E. Flaj_ Fin____ssRudder

(X/L +)

Abort Conditions

i. L/D Max

A. R ne' 4,1.

Titan II

Titan III-C

Saturn I-B

B. TZM

Titan II

Titan III-C

Saturn I-B

2. L/D = 1.0

A. Rene t 41

Titan II

Titan III-C

Saturn I-B

max. W/CL A 0.74 0.07 X X X All All

rain. W/CLA 0.66 0.045 X X X All All

max. W/CLA 0.B2 0.11 X X X All All

min. W/CL A 0.74 0.07 X X X All All

max. W/CL A 0.85 0.13 X X X All All

rain. W/CL A 0.70 0.06 X X X All All

max. W/CLA 0.26 0.02 X X X All All

min. W/CLA 0.095 0.02 All X X All All

max. W/CL A 0.446 0.03 X X X All All

rain. W/CLA 0.255 0.02 X X X All All

max. W/CLA 0.48 0.03 X X X All All

rain. W/CL A 0.17 0.02 All X X All All

max. W/CL A 0.92 0.04 All X X All All

rain. W/CL A 0.86 0.03 All X X All All

max. W/CLA 1.05 0.075 X X X X X

min. W/CLA 0.90 0.036 All X X All All

max. W/CL A 1.02 0.06 X X X All X

rain. W/CLA 0.91 0.04 All X X All All
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TABLE 4. HEAT PROTECTION SYSTEM APPLICATION - RE-RADIATION (Cont'd)

Bottom Top Canopy L.E. Flaps Fins Rudder

(X/L +)

Abort Conditions

2. L/D = 1.0 (cont)

B. TZM

Titan H

Titan III-C

Saturn I-B

max. W/CL A 0.56 0.02 All All X All All

min. W/CL A 0.42 0.02 All All X All All

max. W/CL A 0.69 0.02 All X X All All

rain. W/CLA 0.51 0.02 All All X All All

max. W/CL A 0.68 0.02 All All X All All

rain. W/C LA 0.54 0.02 All All X All All

Re-Entry

1. Ren_ 41

VE

m/sec (ft/sec)

10,363 (34,000)

9144 (30,000)

7468 (24,500)

max. W/CL A X 0.08 X X X X X

min. W/CLA 0.93 0.06 All X X All All

max. W/CLA 0.90 0.04 All X X All All

rain. W/CLA 0.78 0.03 All X X All All

max. W/CLA 0.91 0.05 X X X All All

min. W/CL A 0.8 0.03 X X X All All

2. TZM

10,363 (34,000)

9144 (30,000)

7468 (24,500)

max. W/CL A 0.75

ram. W/CLA 0.57

max. W/CLA 0.53

rain. W/CLA 0.16

max. W/CLA 0.55

min. W/CL A 0.22

0.03

0.02

0.02

0.02

0.02

0.02

All

All

All

All

All

All

X

All

All

All

X

X

X

X

X

X

X

X

All

All

All

All

All

All

All

All

All

All

All

All
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TABLE 5. RE-RADIATION SYSTEM WEIGHTS

Renet41 TZM

Kg/m 2 (lb/ft 2) g/cm 2 (lb/ft 2)

Outer surface material 2.90 (0.594) 4.65 (0.954)*

Insulation weight Based on conduction-solution

Supports and attachments .293 (0.060) .361 (0.074)

Refurbishment

(Channels and Rods)

1.02 (0.209) 1.02 (0.209)

*includes coating

105



TABLE 6. TYPICAL ABLATION HEAT PROTECTION SYSTEM

Velocity = 9144 m/see (30,000 fps)

Vehicle Length = 7.92m (26.00 ft)

Vehicle Weight = 4536 Kg (10,000.001b)

Safety Factor = 1.200

Weight of Shield

Weight of Vehicle
x 104

Location ESM (A) ESM (B) MPN (A) MPN (B)

1 15.05 7.56 14.51 11.23

2 19.11 10.39 20.47 16.66

3 7.92 3.11 5.76 3.66

4 30.'67 10.42 19.54 10.67

5 39.98 13.23 24.87 13.15

6 43.71 12.04 25.83 11.96

7 47.73 9.05 25.94 8.99

8 51.18 9.70 27.81 9.64

9 111.81 19.00 59.53 18.87

10 60.66 10.31 32.30 10.24

11 5.00 0.94 2.71 0.94

12 29.08 8.86 17.66 8.80

13 64.68 30.18 57.14 42.02

14 65.01 32.66 62.69 48.52

15 74.18 41.78 80.95 67.05

16 125.88 56.07 105.45 74.86

17 116.15 54.20 102.61 75.47

18 124.51 62.56 120.07 92.93

19 83.38 35.87 67.11 46,29

20 179.44 82.50 155.86 113.39

21 57.96 23.50 43.58 28.48

22 167.06 67.75 125.60 82.08

23 55.06 23.24 43.37 29.43

24 51.44 21.29 39.61 26.40

25 35.58 14.42 26.75 17.48

26 18.81 7.39 13.69 8.69

27 87.53 36.24 67.40 44.93

28 37.73 17.34 32.77 23.84

29 11.53 2.61 6.50 2.59

30 97.79 39.82 73.88 48.48

31 96.95 20.20 53.69 20.07

32 40.93 16.94 31.52 21.01

33 5.17 0.54 2.57 0.53

34 106,27 62.12 117.98 99.59

35 67.05 12.71 36.43 12.63

36 1.88 0.71 1.33 0.82

37 9.13 3.47 6.45 3.97

38 24.02 8.57 16.00 9.23

39 17.77 6.04 11.32 6.18

Subtotal

Weights ESM (A} ESM (8) MPN (A) MPN (B)

Nose Cap 34.16 17.95 34.99 27.89

Upper Surface 427.79 96.72 242.01 96.96

Lower Surface 1113.35 510.37 964.46 700.58

Sides 193.37 79.36 147.46 97.51

Fins 244.02 79.99 166.86 94.99

Control Surface 219.45 92.33 188.51 133.78

Canopy 52.82 18.81 35.11 20.21

Total Refurbish-

ment Weight 93.56 93.56 157.30 157.30

Total Vehicle 2377.55 989.13 1936.74 1329.25

TBF

(A) 422OK

(300OF)

(B) 589OK

(600OF)
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Figure 74. Typical Joint Concepts (Sheet 1 of 2)
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